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B Baker�Campbell formula. Consider bounded operators X; Y . If [X; Y ] commutes with X;
Y we have

eXeY = e
X+Y +

1

2
[X;Y ]

:

This can be established as follows. Let g(t)= etXetY and h(t) = etXYe¡tX then

g 0(t)=XetX etY + etXYetY =(X + etXYe¡tX)g(t); h0(t)= etX[X;Y ]e¡tX= [X;Y ]

so h(t)=Y + t[X;Y ] and g 0(t)= (X +Y + t[X;Y ])g(t) which has solution

g(t) = etX+tY +t2/2[X;Y ]

from which we deduce the needed formula. Application to unbounded operators requires to deal
with questions of domains and more speci�c hypothesis. We rely mainly on this formula for heuristic
purposes in order to justify the construction of Weyl operators.

Note that

eXeY = e
X+Y +

1

2
[X;Y ]

= eYeXe[X;Y ]:

B Reminder about Weyl operators. Weyl operators are unitaries de�ned as follows. They
corresponds at least formally to generators Q; P satisfying Heisenberg canonical commutation
relations

[Q;P ] = i:

W (s; t)= e¡ist/2eitQeisP = eist/2eisPeitQ= ei(tQ+sP ):

Now [t 0Q+ s0P ; tQ+ sP ] = i (t 0 s¡ s0t) so

W (s; t)W (s0; t 0)= ei(t
0Q+s0P )ei(tQ+sP )e¡i(ts¡s

0t)=W (s0; t 0)W (s; t)e¡i(t
0s¡s0t):

If z= s+ it and we let W (z)=W (s; t) then z�z 0=(s¡ it)(s0+ it 0)= ss0+ tt0+ i(st 0¡ s0 t) so

W (z)W (z 0) =W (z 0)W (z)e¡iIm(z�z
0):

1 Quantum Gaussian (continued)

B General gaussian states. Consider the tensor product of two copies of the Schrödinger model
on which we de�ne Weyl operators

W~ (s; t)f(x1; x2)= e
¡its/2e¡it(ax1+bx2)f(x1¡ as; x2+ bs)
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where a2¡ b2= 1. Let now f1; f2 be two unit vector in L2(R) and consider their tensor product
f = f1
 f22L2(R2). Then

hf1
 f2;W~ (s; t)f1
 f2i= hf1;W (as; at)f1ihf2;W (¡bs; bt)f2i= e¡(a
2+b2)(s2+t2)/4

where a2+ b2=1+2b2. Therefore by choosing b> 0 we can construct Weyl pairs whose quantum
caracteristic function is

e
¡1

2
Q(s2+t2)

for any Q> 1/2. Note that if Q> 1/2 the action is reducible while if Q= 1/2 it is irreducible.
Indeed any irreducible action should have Q=1/2 by Stone�von Neumann theorem.

It is not possible to have Q< 1/2. (why??)

Note that in the model described above there exist another Weyl pair, namely

W ](s; t)f(x1; x2)= e
¡its/2e¡it(bx1+ax2)f(x1+ bs; x2¡ as)

and we have

W~ (s; t)W ](s0; t 0)f(x1; x2) = e
¡its/2e¡it(ax1+bx2)(W ](s0; t 0)f)(x1¡ as; x2+ bs)

=e¡its/2e¡it(ax1+bx2)e¡it
0s0/2e¡it

0(bx1+ax2)e¡it
0(¡bas+abs)f(x1¡ as+ bs0; x2+ bs¡ as0)

=e¡its/2e¡it(ax1+bx2)e¡it
0s0/2e¡it

0(bx1+ax2)f(x1¡ as+ bs0; x2+ bs¡ as0)

=W ](s0; t 0)W~ (s; t)f(x1; x2)

soW ] andW~ commute. Then we can construct the projection P ] associated toW ] and check that

P ]W~ =W~P ]

and therefore W~ cannot have an irreducible action as we already new.

Note also that if we denote by q~; p~ the generators of the Weyl pair W~ and by q1; p1 and q2; p2 the
generators of the two irreducible factors we have

q~= aq1+ bq2; p~= ap1¡ bp2;

at least formally and we note that [p~; q~] =¡i(a2 ¡ b2) =¡i. The Weyl pair W ] corresponds to
the linear transformation

q]=¡bq1+ aq2; p~=¡bp1¡ ap2;

for which (q]; p]) commute with (q~; p~).

B Time�frequency analysis. Let f 2 L2(R). Observe that the quantum caracteristic function
of the standard Weyl pair W (s; t) on L2(R) with state f is given by

hf ;W (s; t)f i=
Z
R

f�(x)e¡ist/2eitxf(x¡ s)dx=
Z
R

f�(x+ s/2)f(x¡ s/2)eitxdx:

In particular

e¡(s
2+t2)/4= h 0;W (s; t) 0i=

Z
R

 0(x+ s/2) 0(x¡ s/2)eitxdx:
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so by Fourier transform we have

 0(x+ s/2) 0(x¡ s/2)es
2/4=

e¡x
2

(�)1/2

and letting s=¡2x we deduce  0(0) 0(2x) =
e¡2x

2

(�)1/2
and therefore

 0(x)=
e¡x

2/2

(�)1/4
:

Now let (dx) = j 0(x)j2dx and transform L2(dx) into L2() by mapping  7!  / 0. This is a
isomorphism between the two Hilbert spaces. Weyl operators become

Ûtf(x)=  0
¡1(x)Ut(f 0)(x)=  0

¡1(x)(f 0)(x¡ t)= ext¡t
2/2f(x¡ t)

and

V̂sf(x)=  0
¡1(x)Vs(f 0)(x)= e

isx 0
¡1(x)(f 0)(x) = e

isxf(x):

This is the real Gaussian model of the Weyl pair.

2 Creation and annihilation operators

Let P ; Q be the generators of the Weyl pair U ;V on the Gaussian model L2(). It can be checked
that

P = i(¡@x+x); Q=x;

[P ; Q] =¡i

on the span P �L2() of polynomials in the x variable which constitute a common dense set where
the operators P ; Q and their powers are well de�ned. The fact that it is dense follows easily from
the Stone�Weierstrass theorem and an approximation argument.

Introduce the two operators a� by

Q=
a++ a¡

2
p ; P = i

a+¡ a¡
2

p :

Note that

a+=
Q¡ iP

2
p =

1

2
p (2x¡ @x); a¡=

Q+ iP

2
p =

1

2
p @x

and

a+a¡¡ a¡a+= [a+; a¡] =¡1:

The operators a+; a¡ are densely de�ned and adjoint to each other, therefore they are closable.
De�ne also

a�= a+a¡=
1
2
(2x@x¡@x2):

Let h0 be the vector such that a¡h0=0, it is unique and h0(x)=1. And let hn=(a+)nh0, they are
eigenvectors for a� and

a�hn= a
+a¡(a+)nh0=nhn:
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Moreover

hhn; hni= ha+hn¡1; a+hn¡1i= hhn¡1; a¡a+hn¡1i= hhn¡1; (a+a¡+1)hn¡1i=nhhn¡1; hn¡1i

and hhn;hni=n!. The functions (hn)n are polynomials and hn has maximum degree n which implies
that in their span there are all the polynomials and as a consequence they are dense in L2(R).
The set (hn/(n!)1/2)n is an orthonormal basis of L2() which diagonalises the operator a� which
is therefore self-adjoint (since it has a spectral decomposition supported on R).

Next if we let z= s+ it, let W (z)=W (s; t) and consider the unit vectors

(W (z)h0)(x) = e
¡ist/2eitx exs¡s

2/2= e¡ist/2¡s
2/2exz= exze¡z

2/4¡jzj2/4

since z2+ jz j2=(s+ it)2+ s2+ t2=2s2+2ist.

On the other hand we have also by BCH formula

e¡ist/2eitQe¡isP = eist/2eitQ¡isPe
¡1

2
[Q;P ]st

= eitQ¡isP = eit(a
++a¡)+s(a+¡a¡)= eza

+¡z�a¡

W (z)= eza
+¡z�a¡= e¡jz j

2/2eza
+
e¡z�a

¡
;

and then

W (z)h0= e
¡jz j2/2eza

+
e¡z�a

¡
h0= e

¡jz j2/2eza
+
h0= e

¡jz j2/2
X
n

zn

n!
(a+)nh0= e

¡jz j2/2
X
n

zn

n!
hn

so we conclude that

e¡jzj
2/2

X
n

zn

n!
hn(x)= e

¡jz j2/4exz¡z
2/4= ���

from which we can obtain expressions for the hn. (there is a problem with the exponents...)

We introduce also exponential vectors

E(z)(x) = (eza+h0)(x) =
X
n

zn

n!
hn(x) = e

xz¡z2/4

for which

E(0)= 1; hE(z); E(w)i=
X
n

(z�w)n

n!
= ez�w:

The linear space E generated by all the exponential vectors is dense in H since it contains the
multiple derivatives of E(z) wrt. z and therefore the vectors (hn)n which are themselves dense.

Weyl operators have an explicit simple action on exponential vectors

W (z)E(u)= e¡z�u¡jzj2/2E(u+ z)

which can be interpreted also in an in�nite dimensional context without di�culties. Actually we
can introduce a family of extended Weyl operators as follows

W (z; �)E(u) = e¡ei�z�u¡jz j2/2E(u+ ei�z)

which encode a further action of R with unitary operators on C.
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B Complex gaussian model. For every h 2 H we can consider the function 'h(z) = hh; E(z)i
which is an antilinear, injective mapping from H to the space of entire functions. Exponential
vector E(u) is mapped to the function eu�z, a+ to the multiplication with the function z and a¡ to
the derivation @z. Scalar product is given by

hzn; zmi= �n;mn!

which coincides with the scalar product

hzn; zmi=
Z
C

(zn)�zme¡jzj
2dz
�
:

Therefore H is equivalent to the L2 space of entire function with this scalar product. This is the
Bargmann�Segal space, complex wave representation. Weyl operators are represented as

'W (u)h(z) = hh;W (¡u)E(z)i= eu�z¡juj2/2hh; E(z¡u)i= eu�z¡juj2/2'h(z¡u)

very similar to the action in the real Gaussian representation.

B Non�vacuum states. Consider now states generated by exponential vectors. We have

e¡jwj
2hE(w);W (z)E(w)i= e¡jwj2hE(w); e¡z�w¡jz j2/2E(w+ z)i= ew�z¡z�w¡jz j2/2

Recalling that W (s+ it)= eitQ¡isP we have

e¡jwj
2hE(w); eitQE(w)i= e2iRe(w)t¡t2/2

and similarly for P . So in these new states P ; Q are Gaussian random variables with non-zero
mean. Let us compute the distribution of the number operator a�= a+a¡.

e¡jwj
2hE(w); e¡ita�E(w)i= e¡jwj2

X
n

jw j2
n!
hhn; e¡ita

�
hni= e¡jwj

2
X
n

jw j2
n!

e¡itn= ejwj
2(e¡it¡1)

which is a Poisson law of parameter jw j2. Classical states are obtained by taking density matrices
obtaines as

�=

Z
C

jE(z)ihE(z)j�(dz)

for some measure � on C. Taking a Gaussian measure one obtains all the Gaussian states for the
canonical pair. In particular if we take �> 0 and

�(dz) =C
�

�
e¡�jzj

2

dz

we have

�=C

Z
C

jE(z)ihE(z)j�
�
e¡�jz j

2

dz=C
X
n

jhnihhnj
(n!)2

Z
C

jz j2n�
�
e¡�jz j

2

dz=C
X
n

jhnihhnj
n!

�¡2n=C�¡2a
�

so letting �= et/2 we have �=Ce¡ta
�
for t > 0 where C is �xed by requiring Tr(�)=1. But these

computations can be justi�ed only if �> 1 indeed we have

khh; E(z)ik6 khk kE(z)k6 khkejz j2/2
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so

jhf ; �gij=
��������Z

C

hf ; E(z)ihE(z); gi�
�
e¡�jz j

2

dz

��������6 kf k kgkZ
C

�
�
e(1¡�)jz j

2

dz. kf k kgk

so the density matrix is a bounded operator if �>1. Moreover it has �nite trace. We have deduced
the formula

e¡ta
�
=

Z
C

jE(z)ihE(z)je
t/2

�
e¡e

t/2jzj2dz:

When t! 0 this formula formally becomes

Id=
Z
C

jE(z)ihE(z)j1
�
e¡jz j

2

dz

which expresses the fact that (E(z)e¡jz j2/2)z2C is an (over)complete basis for H. In particular we
have the formula

h= lim
t!0

e¡ta
�
h= lim

t!0

Z
C

E(w)'h(w)
et/2

�
e¡e

t/2jwj2dw

where the limit is a norm limit and the integral is understood as a Bochner integral, indeed note that

j'h(w)j6 khkejwj
2/2

pointwise in w2C and that we have also kE(w)k6 ejwj2/2.

Note that 'h(w) is an analytic function (in fact, entire) so if it vanish on a curve of non-zero lenght
it should vanish everywhere. This fact is linked to the overcompleteness of this basis. Related set
which ensure vanishing of the function are the lattices (Z+ iZ) for any  2 (0; �

p
]. We will not

show this. The case = �
p

is called von Neumann lattice. When  > �
p

the lattice is not dense
enough to guarantee this property.

If B is a bounded operator, we have

hE(z); BE(w)i=
X
n;m

z�nwm

n!m!
hhn; Bhmi=FB(z�; w)

and we can recover the values of the coe�cients hhn; Bhmi from the knowledge of the function
FB(z�; z) (How?). Therefore the operator B is completely determined by FB(z�; z)= hE(z); BE(z)i,
namely by its diagonal. Also, for trace class operators,

Tr(B) =
Z
C

hE(z); BE(z)ie¡jz j2dz
�
:

B Action of a�. We want to show now that

eita
�
W (z)e¡ita

�
=W (eitz)

and

W (¡z)eita�W (z)= eit(a
�+za++z�a¡+jz j2):

Recall the action of W on the exponential vectors

W (z)E(u)= e¡z�u¡jzj2/2E(u+ z)
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and the action of eita
�
which can be computed simply by

eita
�E(u) = eita�

X
n

un

n!
hn=

X
n

eitn
un

n!
hn= E(eitu):

Then

eita
�
W (z)e¡ita

�E(u)= eita�W (z)E(e¡itu)= eita�e¡z�e¡itu¡jz j2/2E(e¡itu+ z)

=e¡z�e
¡itu¡jz j2/2E(u+ eitz)=W (eitz)E(u):

Next, the family (Qt)t := (W (¡z)eita�W (z))t is a one parameter group of unitary transformations,
let us compute its generator. We have

W (¡z)eita�W (z)E(u) =W (¡z)eita�e¡z�u¡jz j2/2E(u+ z) =W (¡z)e¡z�u¡jz j2/2E(eitu+ eitz)

=e¡z�u¡jz j
2/2ez�(e

itu+eitz)¡jz j2/2E(eitu+ eitz¡ z)= ez�u(eit¡1)+(eit¡1)jz j2E(eitu+(eit¡ 1)z)

Therefore

d
dt
jt=0W (¡z)eita�W (z)E(u)= d

dt
jt=0ez�u(e

it¡1)+(eit¡1)jz j2
X
n>0

(eitu+(eit¡ 1)z)n
n!

hn

=i(u+ z)
X
n>1

un¡1

(n¡ 1)!hn+ i(z�u+ jz j
2)
X
n>0

un

n!
hn

=ia�
X
n>1

un

n!
hn+ iza

+
X
n>0

un¡1

(n¡ 1)!hn¡1+ iz�a
¡
X
n>0

un+1

(n+1)!
hn+1+ ijz j2

X
n>0

un

n!
hn

=i(a�+ za++ z�a¡+ jz j2)E(u)

as claimed. One can use von Neumann's theorem on analytic vectors (below) to check that Z =
a�+za++z�a¡+ jz j2 is essentially selfadjoint on the span of (hn)n and therefore its closure coincides
with the generator of (Qt)t. The law of Z in the vacuum state is that of a Poisson random variable
with intensity jz j2.

Theorem 1. (Nelson) Assume that the symmetric operator A has a dense subspace �� D(A)
of analytic vectors then it is essentially selfadjoint. Here a vector � 2 D(A) is analytic for A i�
An�2D(A) for all n> 0 and

P
n>0 kA

n�k t
n

n!
<1 for some t> 0.
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