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(Lectures of 19/6-21/6)

> Baker—Campbell formula. Consider bounded operators X, Y. If [ X, Y] commutes with X,
Y we have

X+Y+i[X.,Y
eXpY — XY +3IX,Y]

This can be established as follows. Let g(t) =e!*etY and h(t) =e!X Ye~'X then
g'(t)=XetXetY +etXYetY = (X +etX Ye tX)g(t), R'(t)=etX[X,Y]e X =[X,Y]
so h(t)=Y +¢[X,Y] and ¢'(t) = (X +Y +t[X,Y])g(¢t) which has solution

g(t) — etX+tY+t2/2[X,Y]

from which we deduce the needed formula. Application to unbounded operators requires to deal
with questions of domains and more specific hypothesis. We rely mainly on this formula for heuristic
purposes in order to justify the construction of Weyl operators.

Note that
XY = XY H3IXY] v, X [X,Y]
> Reminder about Weyl operators. Weyl operators are unitaries defined as follows. They

corresponds at least formally to generators ), P satisfying Heisenberg canonical commutation
relations

(Q, P]=i.
W (s, t) = e~ i5t/26iQeisP — ¢i5t/2¢isPeitQ — ¢i(tQ+5P),
Now [t'Q+s'P,tQ+sP]=i(t's—s't) so
W (s, )W (s',t') = et Qs PlitQtsP)p—ilts=s"t) — yy7(s/ /)W (5, t)e 1t 's=50),

If z=s+1it and we let W(z) =W (s,t) then z2'= (s —it)(s'+it") =ss’+tt' +i(st' —s't) so

1 Quantum Gaussian (continued)

> General gaussian states. Consider the tensor product of two copies of the Schréodinger model
on which we define Weyl operators

W(S, t)f(l‘h .1‘2) _ efits/Qefit(azlerm)f(xl —as, o+ bs)



where a? — b?=1. Let now fi, f2 be two unit vector in L?(R) and consider their tensor product
f=hH® foe L2(R2). Then

(F1® fo, W (s,8) f1® fo) = ( f1, W (as,at) f1){ fo, W(=bs,bt) fo) = e~ (@ +V)(7+9)/4

where a2 4 b? =14 2b2. Therefore by choosing b > 0 we can construct Weyl pairs whose quantum
caracteristic function is

o 3R+

for any @ > 1/2. Note that if @ >1/2 the action is reducible while if @ =1/2 it is irreducible.
Indeed any irreducible action should have @ =1/2 by Stone—von Neumann theorem.

It is not possible to have @ <1/2. (why??)
Note that in the model described above there exist another Weyl pair, namely
Wh(s,t) fxy, x0) = e~ 18/ 2e it b214022) f(0) 4 bs 25— as)
and we have
W(s, ) WE(s' ') f (21, 20) = e "5/ 2e=Mamatbo) (WWi(s! 1) f) (21 — as, 2o+ bs)

:e—its/2€—it(awl+bw2)e—it’s//2e—it/(bw1+aw2)e—it/(—bas—&-abs)f(wl —as+ bS/, To+bs— as’)

:e—z’ts/2e—it(aw1+bwg)e—it’s//2€—it’(bw1+aw2)f(

x1—as+bs’,xa+bs—as’)
=W, t\W (s,t) f(x1,22)
so W#and W commute. Then we can construct the projection P? associated to W# and check that
PYW =WP*

and therefore W cannot have an irreducible action as we already new.

Note also that if we denote by §, p the generators of the Weyl pair W and by ¢, p1 and ¢o, p the
generators of the two irreducible factors we have

G=aq+bga, Dp=ap1—Dbpo,

at least formally and we note that [p, §] = —i(a? — b?) = —i. The Weyl pair W corresponds to
the linear transformation

¢*=-bg1+ag, P=—bpi—aps,

for which (g%, p!) commute with (g, p).

> Time—frequency analysis. Let f € L?(R). Observe that the quantum caracteristic function
of the standard Weyl pair W (s, t) on L?(R) with state f is given by

(f,W(s,t)f):/ J?(x)e—istﬂeitzf(x—s)dx:/ Flz+5/2) f(x —s/2)e*dx.
R R
In particular

e (T4 — (0 W (s, t) o) :A{%(x+s/2)wo(x —s/2)ett*dx.



so by Fourier transform we have

—x2

B+ 5 /2ol — /26 =

— o2
and letting s = —2z we deduce 10(0)o(2z) :(6721/2 and therefore

.2
ex/2

Yo() :W.

Now let v(dz) = |¢o(z)|?dz and transform L?(dx) into L?(vy) by mapping 1 ~ 1 /1. This is a
isomorphism between the two Hilbert spaces. Weyl operators become

Unf(x) =g ' (@)U fibo) (z) = g (@) (fbo) (z — t) = €™ =2 f (w — 1)
and
Vof (z) = vg (2) Vil fibo) (z) = e*%4hy (@) (fbo) () = €22 f ().

This is the real Gaussian model of the Weyl pair.

2 Creation and annihilation operators

Let P, Q be the generators of the Weyl pair U,V on the Gaussian model L?(v). It can be checked
that

P=i(-0,+ ), Q=x,

[P, Q] =—i

on the span P C L2(«y) of polynomials in the x variable which constitute a common dense set where
the operators P, (Q and their powers are well defined. The fact that it is dense follows easily from
the Stone—Weierstrass theorem and an approximation argument.

Introduce the two operators a® by

at+a~ at—a~
Q=—cro, P=i———.
V2 V2
Note that
+_Q—iP_ 1 9% — & __Q+iP_ 1 5
“ V2 ﬁ( v=0) a V2 Noa
and

ata”—a"at=[aT,a7]=—1.

The operators a®, a~ are densely defined and adjoint to each other, therefore they are closable.
Define also

a®=ata” = %(23&8@ —92).

Let ho be the vector such that a~ho=0, it is unique and ho(z)=1. And let h, = (a™)"ho, they are
eigenvectors for a° and

a’hp,=a%a"(a™)"hog=nh,.



Moreover

<hnahn>:<a+hn—1aa+hn—1>:<hn—laa_a+hn—1>:<hn 1,(a+a +1)h 1> n<h —1ahn—1>
and (hy,, h,) =n!. The functions (h,,),, are polynomials and h,, has maximum degree n which implies
that in their span there are all the polynomials and as a consequence they are dense in L%(R).

The set (h,/(n!)'/?), is an orthonormal basis of L?() which diagonalises the operator a°® which
is therefore self-adjoint (since it has a spectral decomposition supported on R).

Next if we let z=s+1it, let W(z) =W (s,t) and consider the unit vectors
(W(Z)ho)(l’) :efist/Qeitx e:vsfsz/Q _ e*ist/Qfsz/Qezz _ ez26722/47|z\2/4

since 224 |z|2=(s+it)?+ 5% +12=2s%+ 2ist.
On the other hand we have also by BCH formula
e —ist/24itQg—isP _ eist/zeitQ—isPe%[Q,P]st _ oitQ—isP _ git(at+a)+s(at—a”) _ jzat—za~
+_zaq- 122 + _za—
W(z):eza ZaT — o |z] /2eza e—Za ,

and then

W(Z)h —e —|z|? /2 za+ —Za~ ho=e —|z|2/2 Zu+h0*6 |z|? /22 a+ nho=e~ |z|? /QZ —h

so we conclude that

n
eI P23 Zoy (q) = el P g A
n:
n

from which we can obtain expressions for the h,. (there is a problem with the exponents...)

We introduce also exponential vectors

for which

The linear space £ generated by all the exponential vectors is dense in H since it contains the
multiple derivatives of £(z) wrt. z and therefore the vectors (hy), which are themselves dense.

Weyl operators have an explicit simple action on exponential vectors
W (2)E(u) =e 24~ 12128 (4 + 2)

which can be interpreted also in an infinite dimensional context without difficulties. Actually we
can introduce a family of extended Weyl operators as follows

W (z, \E(u) = e 7 12P/28 (4 4 ¢i27)

which encode a further action of R with unitary operators on C.



> Complex gaussian model. For every h € H we can consider the function ¢p(z) = (h, £(2))
which is an antilinear, injective mapping from H to the space of entire functions. Exponential
vector &£(u) is mapped to the function €%#, a™ to the multiplication with the function z and a~ to
the derivation 0,. Scalar product is given by

(2™, 2™y = 0, mn!

which coincides with the scalar product

|2dZ
™

@ am= [ (enyramet

Therefore H is equivalent to the L? space of entire function with this scalar product. This is the
Bargmann—Segal space, complex wave representation. Weyl operators are represented as

pw (n(2) = (h, W(—u)€(2)) = ™20, € (2 —u)) = ™1 20 (2 — )

very similar to the action in the real Gaussian representation.

> Non—vacuum states. Consider now states generated by exponential vectors. We have
eI (E (w), W (2)E(w)) = e 11 (E(w), e 20121728 (w + 2)) = e@2 2w = |21*/2
Recalling that W (s +it) =e"*Q =" we have
€—|w\2<5(w)) eith(w» — o2iRe(w)t—t?/2

and similarly for P. So in these new states P, @ are Gaussian random variables with non-zero
mean. Let us compute the distribution of the number operator a®=a%a".

—|w|? —ita® _ —|wl|? |w|2 —ita® o —|wl|? |w| e—itn — olw e it—1
€ ‘ |<€(w),e 5(w)>fe ‘ lZT<hnae hn>*e l ‘Z 77,' 6‘ |( )

which is a Poisson law of parameter |w|?. Classical states are obtained by taking density matrices

obtaines as
p= [ JEEnEE)n:)

for some measure p on C. Taking a Gaussian measure one obtains all the Gaussian states for the
canonical pair. In particular if we take A >0 and

p(dz) :C%e’Mz‘zdz

we have
N 7/\|z|2 |h h | 2n 7/\\z| |hn><hn| —2n _ —2a®
p= c/|5 22 Z n' i dz= 0y Pnlllinly 2 )

so letting A =e?/? we have p=Ce "t for t >0 where C is fixed by requiring Tr(p) =1. But these
computations can be justified only if A > 1 indeed we have

I, EEDI < IR T IE ] < IR el*/2



SO

(Fop9)l=| [ (1 ENEE 912 ] < sl [ 2tz S 1

so the density matrix is a bounded operator if A >1. Moreover it has finite trace. We have deduced
the formula

t/2
et = [ eI e
C s
When ¢ — 0 this formula formally becomes

Id— A|5(z)><5(z)|%e*\z\2dz

which expresses the fact that (£(z)e*I"/2).c¢ is an (over)complete basis for H. In particular we
have the formula
ot/2

h=lime " h=lim [ &(w)pn(w)—e "1 duw
t—0 t—0 JC ™

where the limit is a norm limit and the integral is understood as a Bochner integral, indeed note that
2
|on(w)| < [|R el /2

pointwise in w € € and that we have also ||€(w)| < e*I*/2.

Note that oy (w) is an analytic function (in fact, entire) so if it vanish on a curve of non-zero lenght
it should vanish everywhere. This fact is linked to the overcompleteness of this basis. Related set
which ensure vanishing of the function are the lattices v(Z +iZ) for any ~ € (0,+/7]. We will not
show this. The case v=/7 is called von Neumann lattice. When v > /7 the lattice is not dense
enough to guarantee this property.

If B is a bounded operator, we have

((2), BEw)) =3 j;f; (s Bl = Fip(2, w)

n,m
and we can recover the values of the coefficients (h,, Bh,) from the knowledge of the function

Fgp(z,z) (How?). Therefore the operator B is completely determined by Fp(Z, z) = (£(z), BE(z)),
namely by its diagonal. Also, for trace class operators,

Tr(B):Aj(g(z),Bg(z»e—\zF%.

> Action of a°. We want to show now that
eitaow(z)e—itao — W(eitz)
and
W(*Z)eitaOW(z) _ eit(a°+za++2a’+|z\2).
Recall the action of W on the exponential vectors

W (2)E(u) =e 241228 (4 + 2)



and the action of e***° which can be computed simply by

Then
eimoW(z)e_imog(u) — eitaOW(z)g(e_itu) — eitac’e—ie*“u—|z\2/2g(e—itu +2)
—e 2 U R28 (4 4 it ) = W (e2)E (u).

Next, the family (Q;):= (W (—2)e**"W(z)); is a one parameter group of unitary transformations,
let us compute its generator. We have

W (—2)et @ W (2)E(u) = W (—z)eita’e 24~ 12128 (y+ 2) = W (—z)e 74~ 121*/28 (¢ity + ¢itz)

=€7Eu7|Z|2/262(e“u+eitz)7|Z|2/2g(€it’u,+€it2 _ Z) — eéu(eitf1)+(e“71)|z|2g(eitu+ (eit _ 1)2)

Therefore

A B it it n
%h;gW(*Z)e“aOW(Z)S(u) d eiu(elt71)+(e”71)|z|zz (e UJJF(@ l)z) hy,

:E|t:0 Y
n>0 ’
. w1 o u™
n>1 : n>0
. u” . un 1 o untl o u”
=1a V;th‘i’lza ;mhn71+lza ;mhn+l+l|2| V;th

=i(a°+ zat +za= +|z|})E(u)

as claimed. One can use von Neumann’s theorem on analytic vectors (below) to check that Z =
a®+zat +za~ +|z|? is essentially selfadjoint on the span of (h,), and therefore its closure coincides
with the generator of (Q¢);. The law of Z in the vacuum state is that of a Poisson random variable
with intensity |z |%.

Theorem 1. (Nelson) Assume that the symmetric operator A has a dense subspace ® C D(A)
of analytic vectors then it is essentially selfadjoint. Here a vector ¢ € D(A) is analytic for A iff

A"peD(A) for alln>0 and ) -, ||A”¢H%n,< oo for some t>0.
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