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(Lectures of 2/7–4/7)

So far we discussed ncCLT and ncGaussians in one dimension. The theory of Weyl operators
in finite dimensions is very similar and is left to the student. In particular Stone–von Neumann
theorem holds and all the irreducible realisations of the Weyl operators are unitarily equivalent.
In order to discuss the equivalent of stochastic processes in continuous time, and in particular to
introduce the non-commutative analog of the Brownian motion we would need infinite dimensional
Weyl operators.

⊲ Weyl operators indexed by Hilbert space. Weyl operators (W (h))h can be meaningfully
defined with h ranging over a complex Hilbert space H and requiring that

W (h)W (h′)= e−iIm〈h,h′〉/2W (h+ h′).

Whenever we consider only finite dimensional subspaces of H, the corresponding Weyl operators
can be realised, according to Stone–von Neumann theorem, only in essentially one way, as we have
seen in the previous lectures. As we move to infinite dimensions however this is not anymore true.
There are irreducible representations which are not unitarily equivalent. This has to be compared
to the fact that it is “easy” for Gaussian measures in infinite dimensions to be mutually singular.

Inspired by our ncCLT we could consider the vector space W generated by elements (W (h))h∈H

with a scalar product fixed by letting

〈W (h),W (h′)〉= eiIm〈h,h′〉/2e
−

1

4
‖h′−h‖2

.

Note that
1

2
‖h′−h‖2− iIm〈h, h′〉=

1

2
‖h‖2+

1

2
‖h′‖2+ 〈h′, h〉.

This scalar product is positive definite : one can see this using the ncCLT we proved or otherwise
by noting the following.

Consider the Hilbert space (C⊕H)n and let ϕn(h)=
(

1⊕
1

21/2n1/2
h
)

⊗n
then

〈ϕn(h
′), ϕn(h)〉=

∑

k=0

n
1

nk

n!

(n− k)!k!
〈h′, h〉k=

∑

k=0

n
n(n− 1)···(n− k+1)

nk

〈h′, h〉k

2kk!
→ e〈h

′,h〉/2

which shows that the function e〈h
′,h〉/2 is positive definite. Therefore we can introduce the scalar

product
〈

∑

i

λiW (hi),
∑

j

λjW (hj
′ )

〉

=
∑

i,j

λīλj e
−

1

4
‖hi‖2

e
−

1

4
‖hj

′‖2

e〈hj
′ ,hi〉/2

and complete W wrt. this scalar product to obtain an Hilbert space F . We denote by Φ the vector
corresponding to W (0) and by abuse of notation, W (h) the unitary Weyl operators.

We let also E(h)= e
1

4
‖h‖2

W (h)Φ the exponential vectors, for which

〈E(h), E(h′)〉= e〈h,h
′〉/2.
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Therefore we have a realization of the Weyl algebra on the quantum probability space (F ,Φ) for
which

W (h)E(h′)= e
−〈h,h′〉/2−

1

4
‖h‖2

E(h+ h′), 〈Φ,W (h)Φ〉= e
−

1

4
‖h‖2

.

The vectors (E(h))h are linearly independent and span a dense set in F . Density is clear by
construction. Linear independence can be seen as follows. Assume that

∑

i
λiE(hi) = 0 for some

choice of (λi)i⊆C and (hi)i⊆H. Then for all g ∈H and t∈R we have

0= 〈E(tg),
∑

i

λiE(hi)〉=
∑

i

λie
t〈g,hi〉/2

by chooising g appropriately we can assume that there exists a unique j such that 〈g, hj〉> 0 and
〈g, hj〉> |〈g, hi〉| for all i=/ j. Therefore by sending t→∞ we deduce that

|λj |6
∑

i=/ j

|λi|e
t(|〈g,hi〉|−〈g,hj〉)/2→ 0.

By continuing in this way with the remaining non-zero coefficients, we conclude that all the coef-
ficients must be zero.

⊲ For each unit vector h∈H we can consider the Weyl pair Us=W (sh), Vt=W (ith). Indeed we
have

UsVt= e−istVtUs, 〈Φ, UsΦ〉= 〈Φ, VsΦ〉= e
−

s2

4 .

In turn to (Us, Vt) it corresponds self–adjoint operators Ph, Qh satisfying canonical commutation

relations and creation and annihilation operators ah
±.

More generally we can establish that Ph=Qih and that Qk+l=Qk+Ql if Im 〈k, l〉=0 and

[Qh, Qk] = iIm〈h, k〉.

Note that

[ah
+, ak

+] = 0, [ah
−, ak

−] = 0, [ah
−, ak

+] = 〈h, k〉.

⊲ Fock space. The vacuum vector Φ is annihilated by all the (ah
−)h and we have E(h) = eah

+

Φ.
In particular the family of vectors ((ah

+)nΦ)n,h span a dense set in F , by polarization the same is
true for the vectors

ah1

+ ···ahn

+ Φ, h1, ..., hn∈H

which are ortonogal for different n and have norms

‖ah1

+ ···ahn

+ Φ‖2=
∑

σ

∏

i=1

n

〈hi, hσ(i)〉=
1

n!

∑

σ,σ ′

∏

i=1

n

〈hσ ′(i), hσ(i)〉

where σ, σ ′ runs over the permutations of {1, ..., n}. From this formula we realise that the Hilbert
space F is isomorphic to the direct sum

F ≃⊕n=0
∞ H⊗sn

where H⊗sn denotes the n-th symmetric tensor product of H which can be realised by taking the
full tensor product and projecting on the symmetric component. Indeed observe that

‖ah1

+ ···ahn

+ Φ‖2=n!〈Πs(⊗ihi),Πs(⊗ihi)〉H⊗n
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where Πs(⊗ihi) =
1

n!

∑

σ
⊗ihσ(i) is the symmetrization operator. Note also the factor n! which

remains and which relates the norm on F to the natural norm of ⊕n=0
∞ H⊗n before symmetrization.

From now on we will realize concretely F as ⊕n=0
∞ H⊗sn with this scalar product. The vacuum

vector corresponds to a unique (modulo phase factor) unit vector in the factor with n=0, so we will
fix Φ∈H⊗s0⊆F . With this identification we can now write, for example, the exponential vectors as

E(h) =
∑

n=0

∞
h⊗n

n!
∈⊕n=0

∞ H⊗sn=F .

We denote also with h1 ◦ ··· ◦ hn=Πs(h1⊗ ··· ⊗hn) the symmetric tensors for which

‖h1 ◦ ··· ◦hn‖F
2 =n!‖Πs(h1⊗ ··· ⊗ hn)‖H⊗n

2 =
∑

σ

∏

i=1

n

〈hi, hσ(i)〉.

Moreover we have

ah
+(h1 ◦ ··· ◦ hn)= h ◦h1 ◦ ··· ◦hn, ah

−h1 ◦ ··· ◦hn=
∑

i=1

n

〈h, hi〉h1 ◦ ··· ◦ hi ◦ ··· ◦hn,

ah
−E(k) = 〈h, k〉E(k), ah

+E(k)=
d

dt
|t=0E(k+ th).

⊲ Rigid motions of the Hilbert space. Denote with G the group of rigid motions of H. The
elements of G are pairs g = (h, U) with h ∈ H and U a unitary operator on H. The action is
gf :=Uf + h so that g ′ gf = g ′(Uf + h) =U ′Uf +U ′h+ h′ and (h′, U ′)(h, U) = (U ′h+ h′, U ′U).
Correspondingly we can define extended Weyl operators Wg=Wh,U by

Wh,UE(u)= e−Ch,U(u)E((h, U)u), Ch,U(u)= 〈h, Uu〉+
1

2
‖h‖2.

Note that the family of functions (Cg)g∈G satisfies

Cg ′g(u)=Cg(g
′u)+Cg ′(u)− iIm〈U ′u, u′〉

and therefore we have Weyl relations

Wg ′Wg= e−iIm〈u′,U ′u〉Wg ′g.

From these relations it follows thatWg is preserves the scalar product and is invertible and then can
be extended by continuity to all F as a unitary operator. Therefore (Wg)g is a projective unitary
representation of G in F . As usual by now we can harvest its strongly continuous one parameter
subgroups to obtain random variables.

We will denote by Ph the generator of the pure translations (W(th,I))t in the direction of h.

Moreover if H is bounded and selfadjoint on H we can consider the strongly continuous unitary
group (W(0,Ut))t where Ut = eiHt and denote by λ(H) its generator, a selfadjoint operator on F .

This is called the second quantisation of H . On the exponential domain W(0,Ut)E(u)= E(Utu) and

∂t|t=0W(0,Ut)E(u)=
∑

n>1

1

(n− 1)!
u◦n−1 ◦Hu=Hu ◦ E(u)= aHu

+ E(u).

If (en)n is an ONB of H we have the heuristic formula

λ(H)=
∑

n

aHen
+ aen

− .
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Therefore we will also denote λ(H) = a◦(H).

A particular case is when Ut= eitγ for some bounded measurable real function γ:R+→R. In this
case Hf = γf and we denote λ(H)= aγ

◦ whose action on symmetric tensors is given by

aγ
◦(h1 ◦ ··· ◦ hn)= γh1 ◦ ··· ◦hn+ h1 ◦ γh2 ◦ ··· ◦ hn+ ···+ h1 ◦ ··· ◦ γhn.

⊲ Some further random variables. Let (α(t))t, (h(t))t, (U(t))t be C1 curves in C,H, and in
unitary operators of H (in strong topology), respectively. Consider

Zt= eiα(t)W(h(t),U(t))

and assume that things are such that (Zt)t is a strongly continuous one parameter group. Assume
α(0)=0, h(0)=0, U(0)= I, and let α′(0)=α′, h′(0)=h′, U ′(0)= iH . Then we can compute its
generator on the exponential domain E as follows. Note first that

ZtE(u)= eiα(t)e
−〈h(t),U(t)u〉−

1

2
‖h(t)‖2

E(h(t)+U(t)u).

Now

Z0
′E(u)= iα′E(u)−〈h′, u〉E(u) +

d

dt
|t=0E(h(t)+U(t)u)

=(iα′− ah′
− + ah′

+ + iaH
◦ )= i(α′−Ph′+ aH

◦ )

where the reader can check that indeed Ph′= i(ah′
+ − ah′

−).

⊲ Enters time. Let us now specialise our situation to the interesting case H = L2(R+). In this
case we can take at

±= aI[0,t]
± and observe that the (commutative) family of random variables (Qt)t

is distributed as a Brownian motion on the vaccuum state. Similarly for (Pt)t.

⊲ A Poisson process. The Fock space F does not contains only Brownian motion, there is also
a Poisson process there. Let γ ∈L2(R+) and compactly supported. Consider

Z(γ)= eiα(γ)W(h(γ),U(γ))

where U(γ)f(r)= eiγ(r)f(r), h(γ)(r)= c(eiγ(r)− 1)∈L2(R+) then

ZγZγ ′= ei (α(γ)+α(γ ′))W(h(γ),U(γ))W(h(γ ′),U(γ ′))

=ei (α(γ)+α(γ ′))W(h(γ)+U(γ)h(γ ′),U(γ)U(γ ′))e
−iIm〈h(γ),U(γ)h(γ ′)〉.

where h(γ) +U(γ)h(γ ′)= c(eiγ − 1)+ c(ei (γ+γ ′)− eiγ)= c(ei (γ+γ ′)− 1)=h(γ+ γ ′) and

Im 〈h(γ), U(γ)h(γ ′)〉= Im

∫

0

∞

c2(1− eiγ(r))(eiγ
′(r)− 1)dr

=c2 Im

∫

0

∞

sin(γ(r))+ sin(γ ′(r))− sin(γ(r)+ γ ′(r))dr.

Letting α(γ)= c2
∫

0

∞
sin( γ(r))dr we have

Z(γ)Z(γ ′)= eiα(γ+γ ′)W(h(γ+γ ′),U(γ+γ ′))=Z(γ+ γ ′)=Z(γ ′)Z(γ).
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Therefore (Zt(γ) = Z(tγ))t is a strongly continuous unitary group whose generator Xγ, by our

computations above is α′−Ph′+ aH
◦ with α′= c2

∫

0

∞
γ(r)dr, h′= ciγ, Hf = γf and Zt(γ)= eitXγ

with

Xγ= c2
∫

0

∞

γ(r)dr+Qcγ + aγ
◦ .

Moreover Xγ+γ ′=Xγ+Xγ ′ and (Xγ)γ is a commuting family of self–adjoint operators whose law
in the vacuum state is given by

〈Φ, eitXγΦ〉= 〈Φ, eiα(t)W(h(t),U(t))Φ〉= eiα(t)e
−

1

2
‖h(t)‖2

= e
i c2 Im

∫

0

∞
sin(tγ(r))dr−

1

2

∫

0

∞
c2|eitγ(r)−1|2dr

=e
ic2

∫

0

∞
(eitγ(r)−1)dr

.

Moreover if γ, γ ′ have disjoint support we have

〈Φ, eitXγe
isXγ ′Φ〉= 〈Φ, eiXtγ+sγ ′Φ〉

=e
ic2

∫

0

∞(

ei (tγ(r)+sγ ′(r))−1
)

dr= e
ic2

∫

0

∞
(eitγ(r)−1)dr

e
ic2

∫

0

∞(

eisγ
′(r)−1

)

dr

=〈Φ, eitXγΦ〉〈Φ, eisXγ ′Φ〉

so Xγ , Xγ ′ are independent. Taking γ(r) = I[0,a] and letting Xa =Xγ we have that (Xa)a>0 is a
Poisson process of intensity c2.

5


	Sheet 9

