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The RG map 2/31

We consider here € € C complex.

RG map: It is the map R(g, 7): Birim — Birim given by

Z Rﬁl,..., Z Rel,... Hﬁl, ' Hgn), H e Btrim,

and it is a composition between integrating-out, trimming, and dilatation.

Since the fluctuations propagator and the scaling in the dilatation are both analytic functions
w.r.t. €, then also the RG map will be analytic w.r.t. € whenever the sum is convergent.



Set for £ and norm bounds 3/31

Let T be a compact subset of the half-plane

T C{e€C:Reec < d/6}.

Same bound for S/ " with uniform T-dependent constants for e € T.

The action of dilatation for complex ¢ has the same form with D;=/[¢)] — d complex, since
[¢V]=d /4 —¢</2. For its bounds, replace D; with Re Dy

IDHepllw =72 =P Hepllw( <77 P IHepllwy € €T

New criterion for irrelevance: Re D;+ p > 0.

The parameter D is redefined as

=D(T) :%(rgneirT] {Re Dy(¢) +2,Re D4(e) +1,Re Dg(e)} > 0.

Ol



EI,...,En

Bounds on R,

Same replacement for the estimates for multilinear maps Ry" " .
o If (n;(41,...,¢,))=(1;4), then
’7_ReD2_2HHQRHW if /=2R
IRE(Hlw < q vReP Y| Hagllw if £=4R
YRy, if 1= >6

while |R3H(v)| =Rl and [REE(A)| = ~ReDi|A|
o If (n;(l1,...,4,))#(1;¢), then
IRy (hay oy o)l <4 RPipy(ha, o ), hi€ By,

pi(h, ... hy) = CI I, GOl i 2, 16 =14 2(n — 1)
0 otherwise



Definitions of e,, e\, e,

Fixed point equation: Denoting y = (v, A, u), the FPE reads as

N
|

Y2 (w4 hA) + e (),
A= O+ ) +el(y),

u = eu(_y)7
where
ely) = > R (Hey .o Hy),
(£i)1#(2L),(4L)
e(y) = S RE: Y (Hy,, ... Hy),

(¢i)1#(2L),(4L,4L),(6SL)

es(y) = Y R U(Hey.. He,),  £#2L,4L,6SL.
(€)1



Norm of a trimmed sequence 6/31

Given y-dependent constants Ay, A§, AR AR A, we denote by ||u||B(%5) the following norm of
a vector u = (Hg)o£oL aL,65L = (Ur)re{2R,4R,6R,8,10, ...} Of irrevelant components (6SL exlcuded)

|ullB(v,5)= max luorllw [[uarllw ||uR]|w supM
Y A§52 ’ A1R52 ’ A2R(53 7628 A(Sk(g) ,

where k(£)=1{¢/2 —1, in terms of which the norm of y = (v, A\, u) can be rewritten

_ vl AL
v =max { L L ol o

Moreover,

Xa(x) = —8X2) _ ABI0Dng (7).
n=1



Main result

Choose d € {1, 2,3}, cutoff x, N>4, and a compact set T C C as before.

Complex Key Lemma

There exist ey > 2 and positive continuous functions

80(7); Ao(7), {AR(V) }k=0,1,2, A(7), Eo(7): E1(7), 0N ¥ = Ykey:

with the following property: Take any v = Ykey, any 0< 6 <do(y) and any y =(v, A, u) satisfying
|y |lv(y,5)< 1, and apply to it the R(e,~) with any e € T. Then

P <Bs [P W<ESR eyl <P,
o2 ;63 -D .
|@,’e1(/0)(y)| ,:05 : |8 (0) ’ gﬂ 10ieu(y)| gl\?, I=v, A\,
100 2o ,my S ot 1008”0 c(pmy S B l10ueu(y)llcie.my <7 ~°,

uniformly in e € T.



Bounds on e,: case £>8

We start from the bound on ||(ey(y))¢|lw with £> 8.

Recall

g_z 61,... Hgl, .. Hgn).

Previous bounds:

ICeu(y))ellw < v P Jugllu +y7REP" G

()

=3
H~
(S

where Hy, should be interpreted as equal to

e U, If f,-:2L,
o )\ if /,=4L,
o X, if £;,=06SL,

e uy, otherwise.

Recall that p;=0 unless ). [(;| > /+2(n—1).



Case £>8 o/31

By using the assumption ||y ||y (y,5) <1, we find

[Havllw + [ Horllw < Acd + AGS> =: by,
[HaLllw + || Hagllw < Aod + AT6* =: by,
[HesL|lw + || Herllw < C,3A56% + A56® =
[Hellw < ASKED) =1 by,  if £2>8.

I|I
S
»

Recall k(¢)=|¢|/2—1.

Re-arrange the bounds as:

b < Agmaiki1l k>0.

e For k>3 this is true as an equality by the definition of by.

e To have this for k=0,1,2 as well, we will assume (assumptions are marked with #):

(#)  2max (Ag, Afdo, AFdo, C,3A5+ ASS0) < A.



Case > 8

Recall that

pi(Hey, ... He )= { Cr M T, GO H L i S 16 =1 +2(n — 1)

0 otherwise
We find that
I(euly))ellw < 7REP(AGKO + AL + AG)),

where we defined (here C = (3):

o0

AP = S K tp, AP = > Rk,

k'=k+1 (ki)i_y,n>2

CI I, Chitlby if 3 ki>k
0 otherwise

Fil(ki)i] = {

.



Case ¢ > 8: Estimates on Af(i)

Recall by < As™> k1 for k>0, and

A= e ARP= Y (k)L
k'=k+1 (ki)!—1,n>2
n—1 n ki+1 , .
Ak =4 o M= O 1 il 2
0 otherwise

Lemma

Suppose the nonnegative constants C,, C,J, A satisfy
() Co<1/4, C,CA6<L1/2, C,CA<L1/2,
and that 0 < b, < AS™>K L for afl k> 0. Then we have

Co=4C+8C>+16C3 ifk=0,1

A(1)<A5k+l 2ck+2 : A(2)<A5max{k,2} .
k ( ) k 2(2C)k+1 ifk>?2



Proof of the Lemma 12/31

First bound: Easy. We focus on the second bound.

Extending by zeros: For any sequence » = (k;){, we say that a sequence s’ extends > by m zeros
if it is obtained from sz inserting m zeros in arbitrary places.

Define Fext[7¢] as the sum of F[s¢/] over all 5" extending s by an arbitrary number of zeros m>0

O

Fextlod =) > Fl>].

m=0 3¢’: extends 3¢ by m zeros

Since F[s'] = F[#](C,Chy)™, we obtain

Fext[%] < F[%]ZO (mr_r7|_ n>(C7Cb0)m = (1 — C71Cbo)”+1 F[%].

Recall by < Ad. Thus using C,CA) <1/2 we have

Foxe[22] <2"CFLF[].



Proof of the Lemma 13/31

Next, we will sum over sequences with a fixed > k;. Namely, we define

O

o= Y  Fl(k)i, k=0

n=2 (/(,)’17 ,Zk,':k

We first estimate ®,'s and then convert into the estimate for AP — Zf,’:k by

Consider first k >2. By extending by zeroes, using by, < AS¥ and some combinatorics, we arrive to
k
b <y 27T > Fl(k)I] <4CFHIASK(142C,CAK L,
n=1 (k,)i’,Zk,:k,k,>1
which implies
®, <2C(2CH)*A, k>2,

once we use C,CA<1/2.

With C,CA<1/2 one can also show Fe[(k;)]] <4CKTLAGKT™.



Some computations for the previous slide:

8

Oy = Yo F[(k)II<
(kl),177ZkI:k

2L ST F(k))

(ki)1,> ki=k,ki>1

k
=1

L

n

S

Let (k)1,>  ki=k, with m=#{ki=0,i=1,...,n}
F[(k,)'f] < Cg—ll_‘[ Ck;+1A5k;v1 — Cg—ch,-k,-JrnAn(;Z,-k,-er < Cg—lck—i—nAnék—l—m.
i=1

Then, for k>2, m=0,

k
O <ACKTIAGHT™Y - (2C7CA)”1(I; B i) <A4CHHLASK(1+2C,CA)F L.

n=1



Proof of the Lemma 15/31

We bound &, for k=0, 1.

For k=0, ®g involves the sequence (0,0) and its extensions by zeros. We have then
o= Fexe[(0,0)] <4CAS.
For k=1, ®; involves the sequences (1,0), (0,1) and their extensions by zeros. Then
;1 =2F.[(1,0)] <8C%AH.

Estimate AlY = > o Pk summing up in geometric progression, which is possible since 2C6 <
1/2, and adding ®g and ®; when needed. We thus obtain

AP < C2CokA, k=2,
AP = o+ AP <(8C2+16C3)A2,
AP = &g+ 01+ AP < (4C+8C2+16C3)AS2,

which concludes the proof. ]



We find

(eu(y))ellw < 7 REPLASKO(1 4 2CKO+25 4 2(2C)H(D+D,

It follows

|(eu(y))ellw <y ~PASKO, 1>,

as long as we impose

1+2ck(€)+25+2(2c)k(£)+1< ,YReDg—D.

Given the form of this inequality, it is sufficient to check that it holds for £ =8, and that the
|.h.s. grows slower than the r.h.s. as {— ¢+ 2, which amounts to two requirements:

()  14+2C*+202C)*<ARDL=D  max(1, C,2C) < y9/2Ree,



Case /¢ P> 8 17/31

Next, we estimate derivatives.

Consider a vector §y = (év, 0\, du) satisfying ||dy || <1, and a trimmed coupling sequence §H,
which contains the couplings in dy and, in addition, the coupling dHgsL corresponding to the
variation of X,.

We have

and thus

S

IV, (eu(¥)) ey llw <y REPESHelw + 7R >~ Y pi(Hey -, 6Heys - Hy,).
(€)i#L i=1

Note that ||§HgsL|lw <2C3,A50%. We will increase Gs., by factor 2.
Then all couplings dHy satisfies the same bounds as the ones on H, used to estimate ||(e,(y))el|w-

It follows that the functions p; can be estimated in exactly the same way.



Case > 8

This gives

_Re 1 X (2
19, (euly))e byl < 7 =ReP(AHO) 1 ALY + AT ).
where Af(z) differs from A‘f’ in that Fi[(k)] is replaced by

Frl(ki)i] = nFi[(k)i,

where the factor n accounts for the sum >"7 .

We increase C, in by 2 to absorb this factor (note n<2"~1), so that both Fi and Fi can be
considered to satisfy the same bound.

Then, under the same assumptions for the bound on ||(e,(y))e¢||w, we will have

IV, (es(y))edyllw <7 PASKO, >3,

Taking into account the assumed bounds on couplings dy, this inequality is precisely what is
asserted in the Key Lemma concerning the part of e, with £ > 8.



Bounds on e,: case £ =060R

Recall Rk %= DS if (¢;)7 # (6SL), (4L, 4L), and zero otherwise.

From the definitions and the bounds on Rg5 " we find that

Ieu(¥))erllw < 7Rl Jugrllw + v~ > pel(£i)1]-
(£33 #(65U),(6R), (4L,4L)

By repeating a discussion analogous to that of the previous part, we get
_ 1 2
I (euly))orllw < v ~REL(ABS + A5+ ASR).

where A%R is defined analogously to Agl): k({)=1¢|/2—1
AZR=2C,C*bibf+ > R(k)I,

with bff = AF62. The difference is due to the fact that there is no (4L, 4L).



Case ¢/ =0R -

It is convenient to define, for any subsequence s = (k;)7,

Fext[7] = Z F[].

2’: extends s by >0 zeros

Split the second term in A%R into the contributions of sequences (1,1,0), (2,0), their permu-

tations and extensions by zero and sequences with ) k; > 3 which form Agz):

AS)e =2C,C*1bF + 2Fi[(2,0)] + 3Fuxe[(1, 1,0)] + A,

One can show that, with the same assumptions as for ¢ > 8,

Fo[(ki)i] <4CHTTASKH™,

where k=3 k; and m is the number of zeros in the sequence (k;)7.



Case ¢/ =0R i g

We have

AS)e =2C,C*b1bF + 2Fr[(2,0)] + 3Fuxe[(1, 1,0)] + AP,
By the bound on A{?) with k=3, bf < ARS2, C,CA<1/2, and Fue[(ki)]] <ACKTIASHTM we get

AZ) <(C3AR 4 (8C3 4+ 12C3 +2(2C)%) A)62.

This implies

1(eu(y))6r|lw <y ~REDG3(AF +2C*A+ C3AF 4 (20C3 +2(2C)H A),
which is smaller than 7_5A§53, provided that

(®) AR +2C*A+ C3AF +(20C3 +2(2C)*)A < AReDs—D AR



Bounds on e,: case £ =4R

From the definitions and the bounds on Rs5 " ~*“ we find that

I(eu(y))arllw < 7R uarllw +77RP S pal(6)1],
(£i)1#(4L),(4R)
so that

I(eu(y))arllw < 7 REP=(ARS2+ v AN + AP,

which gives

[(eu(¥))arllw < 77REPTISA(AT + 7A(RC3) + v GoA).

This is smaller than fy_EAféz, provided that

(d) AR+ HAQRCE+ G) < AReDH1I-DAR,



Bounds on e,: case £ =2R

From the definitions and the bounds on Rel""’e” we find that
1(eu(¥))2rllw < v~ REP272 [ ugl|w + 7y ReP2 > p2[(4i)1],
(€:)1#(2L),(2R),(4L)
so that
I(eu(y))2rllw < 7 ReP22( ABS? + 72A0 + 2AY),
where
A§Dg= C?bF + A < C2ARS? 1 AF2(2C3).
Therefore,

I(eu(y))orllw <y 7REP2262(AG 4 72(CPAF +2C3A+ GoA)).
This is smaller than 7_5A6?52, provided that

(W) AF+(CAF +2C°A+ GA) < ARePH2-DAF.



(0)

v

Bounds on e

)= Y R (He. . Hy).
(£i)1#(2L),(4L)

From the definitions and the bounds on R " we find that

|e;(/0)()’)| Ly Reb Z p2[ ()11,
(€:)1#(2L),(2R), (4L)
so that
0 _ReDyf A (1 2
[eD(y)] < v ReP (Al + AF)),
which gives

|eO(y)| < yReL2(C2AR + 2C3A + GoA).

We thus get the bound with

Eo=y~ReD(C2AR 1 2C3A + GoA).



(0)

Bounds on e,

Recall,

e>(\0)(y): Z Rﬁl""’E"(Hgl,..., Hgn).
(Ei)i’#(4L),(4L,4L),(6SL)

From the definitions and the bounds on Rs" " ~*“ we find that

Py N al@n <y (Al +aR),

(€:)1#(4L),(4R),(6SL),
(aL,4L),(4L,2L),(4R,2L)

where

AN = CbF+ AP < A + AB(2CY),
n>2
AR = 2¢,Chbf+ Y Rl(k)i]= A%k
(ki) #(1,1)

where excluded (1,0), (1,0,0), etc, are excluded from the second term.



Bounds on e)(\o)

We see that Aﬂ is identical to A%R and therefore satisfies the same bound
AP < (C3AR 4+ (8C3 4+ 12C3 +2(20)%) A)62.
Therefore, we get
()] < 7 RePG3(C3AR +2C*A + C3AR 4 (20C3 +2(2C)4)A).
We thus get the the bound, with

Ey=~ReDy(C3AF +-2C*A+ C3AF + (20C3 +2(2C)H)A).



Tuning the parameters 27/31

Finally, we need to show that all the six #d-constraints can be satisfied consistently.

Recall the constraints:
2 max (Ao, Agdo, Ao, C,3A3+ ARdg) < A,
C5<1/4, C,CA6<1/2,  C,CA<1/2,
1+ 2C* +32C*<AReDs=D  max(1, C,2C) < y9/2 Ree,
AR + CPAF 4 (20C3 + 34CHA K yRePe—D AR,

AR +7A(2C% + Co) < AReD+H1-PAF,

A +72(C2AF + (2C% + o) A) < RePr 2= DAL,



Tuning the parameters

Replace all v-independent constants in the |.h.s. of the #-constraints by their maximum C.

Also let C, =max (C,, C,3) and

Z:mir;{ReDg—5,d/2—Res,ReD6—E,ReD4—|—1—5,ReD2+2—5}>O.
S

List of constraints which imply the #-constraints for any ¢ € T

C <%, Co <1, CC,AL1, (1)
max (Ao, Ag(So, Aféo, EWA(% + A§50) < ga ( 2)

AS + C(AT + A) < Y2AS, AT+ CYAS AT, AS+ GA(AT + A) < HPAS.  (#3)

> »

The only remaining varying parameter is ~.

We should now choose 7y and do, Ao, {Af}kzo,l,z, A, Ey, E1, which are ~-dependent and
positive, so that all these constraints hold for v > ~key.



Tuning the parameters 20/31

We can satisfy the line (#;) taking ~ large, then A and &g small.

To satisfy line (#3) we require

AR ASAR,  AA<AR,  2A RPARCAR,

14+ 2C <+4, 14+ C<AZ.

The last constraint on ~ is of the same type as C < ~v%.

Joining the inequalities above and (#,), the resulting set of constraints reduces to

A<l TAR<IA
ARc|A LA AR c|~A A AR |24 LA
2 ’4(50 ’ 1 725 3 0 7250 ’



Tuning the parameters

Here is then the final order in which all choices have to be made:

® iy is chosen as the minimal > 2 satisfying C <~ in (#;) and 1+ C,1+2C <~7%.
e We then pick any v > 4ie, and compute the constant C,.
e We then satisfy CC,LA< 1 in (#;) by choosing A=(CC,)~*.
e We then choose Ay sufficiently small to satisfy Ag<A/2 and C,A5< A/4.
e Finally, we choose §o=min (C~%,1/(2+%)), which satisfies Cép < 1
— All the assumptions in (#1) are satisfied.

e At the same time, thanks to 6o < 1/(273), we can choose Af as follows

1 1
R R R
Ay = 450A’ AT = YA, A = 250A'

—  This implies (#2) and (#3).

This concludes the proof of the Key Lemma.



Appendix: Definition of R}

For (n; (¢1,...,¢,))=(1; ) we have

since in this case Sf =1 and trimming is not needed. In all the other cases (n; ({1,...,¢,)) # (1;4),
recalling that /=1¢|, we have

Rfl’._.’gn _ D 561,...,£n 628
TiS/ % e {2L,2R, 4L, 4R}

Sebtt (0)7= (4L, 4L
R£SL b _ D{ ()1=( )

0 otherwise
Rl b _ p) Set T (4)7+#(6SL), (4L, 4L)
oR 0 otherwise

where T}: Bj— By is the trimming map.

Just as 551""’5”, the ma Rel’”"e” is symmetric and it vanishes unless > . |¢;| >1+2(n—1).
p y ;



