Non-perturbative Renormalization The Key Lemma

April 13, 2021

S4F3 - Graduate Seminar on Applied Probability

The RG map

We consider here $\varepsilon \in \mathbb{C}$ complex.

RG map: It is the map $R(\varepsilon, \gamma)$: $B_{\mathsf{trim}} \to B_{\mathsf{trim}}$ given by

$$\sum_{(\ell_i)_1^n} \mathcal{R}_\ell^{\ell_1,\ldots,\ell_n}(H) = \sum_{(\ell_i)_1^n} R_\ell^{\ell_1,\ldots,\ell_n}(H_{\ell_1},\ldots,H_{\ell_n}), \qquad H \in \mathcal{B}_{\mathsf{trim}},$$

and it is a composition between integrating-out, trimming, and dilatation.

Remark

Since the fluctuations propagator and the scaling in the dilatation are both analytic functions w.r.t. ε , then also the RG map will be analytic w.r.t. ε whenever the sum is convergent.

Set for ε and norm bounds

Let T be a compact subset of the half-plane

$$T \subset \{ \varepsilon \in \mathbb{C} : \operatorname{Re} \varepsilon < d/6 \}.$$

Same bound for $S_l^{\ell_1, \dots, \ell_n}$ with uniform T-dependent constants for $\varepsilon \in T$.

The action of dilatation for complex ε has the same form with $D_l = I[\psi] - d$ complex, since $[\psi] = d/4 - \varepsilon/2$. For its bounds, replace D_l with Re D_l :

$$\|DH_{\ell,p}\|_{w} = \gamma^{-\operatorname{Re}D_{l}-p} \|H_{\ell,p}\|_{w(\cdot/\gamma)} \leqslant \gamma^{-\operatorname{Re}D_{l}-p} \|H_{\ell,p}\|_{w}, \qquad \varepsilon \in \mathbb{C}.$$

New criterion for irrelevance: Re $D_l + p > 0$.

The parameter \overline{D} is redefined as

$$\overline{D} = \overline{D}(T) = \frac{1}{2} \min_{\varepsilon \in T} \left\{ \operatorname{Re} D_2(\varepsilon) + 2, \operatorname{Re} D_4(\varepsilon) + 1, \operatorname{Re} D_6(\varepsilon) \right\} > 0.$$

Bounds on $R_\ell^{\ell_1,\ldots,\ell_n}$

Same replacement for the estimates for multilinear maps $R_\ell^{\ell_1, \dots, \ell_n}$.

• If $(n; (\ell_1, \dots, \ell_n)) = (1; \ell)$, then

$$||R_{\ell}^{\ell}(H_{\ell})||_{w} \leqslant \begin{cases} \gamma^{-\operatorname{Re}D_{2}-2}||H_{2R}||_{w} & \text{if } \ell = 2R\\ \gamma^{-\operatorname{Re}D_{4}-1}||H_{4R}||_{w} & \text{if } \ell = 4R\\ \gamma^{-\operatorname{Re}D_{1}}||H_{\ell}||_{w} & \text{if } I = |\ell| \geqslant 6 \end{cases},$$

while $|R_{2L}^{2L}(\nu)| = \gamma^{-\operatorname{Re}D_2}|\nu|$ and $|R_{4L}^{4L}(\lambda)| = \gamma^{-\operatorname{Re}D_4}|\lambda|$.

• If $(n; (\ell_1, ..., \ell_n)) \neq (1; \ell)$, then

$$||R_{\ell}^{\ell_1,\ldots,\ell_n}(h_1,\ldots,h_n)||_w \leqslant \gamma^{-\operatorname{Re} D_l} \rho_l(h_1,\ldots,h_n), \qquad h_i \in B_{\ell_i},$$

$$\rho_{I}(h_{1},\ldots,h_{n}) := \begin{cases} C_{\gamma}^{n-1} \prod_{i=1}^{n} C_{0}^{|\ell_{i}|} \|h_{i}\|_{w} & \text{if } \sum_{i} |\ell_{i}| \geqslant I + 2(n-1) \\ 0 & \text{otherwise} \end{cases}.$$

Definitions of e_{ν} , e_{λ} , e_{u}

Fixed point equation: Denoting $y = (\nu, \lambda, u)$, the FPE reads as

$$\nu = \gamma^{d/2+\varepsilon}(\nu + I_1\lambda) + \mathbf{e}_{\nu}^{(0)}(y),
\lambda = \gamma^{2\varepsilon}(\lambda + I_2\lambda^2) + \mathbf{e}_{\lambda}^{(0)}(y),
u = \mathbf{e}_{u}(y),$$

where

$$\begin{array}{ll} e_{\nu}^{(0)}(y) &=& \displaystyle\sum_{(\ell_{i})_{1}^{n} \neq (2\mathsf{L}), (4\mathsf{L})} R_{2\mathsf{L}}^{\ell_{1}, \ldots, \ell_{n}}(H_{\ell_{1}}, \ldots, H_{\ell_{n}}), \\ e_{\lambda}^{(0)}(y) &=& \displaystyle\sum_{(\ell_{i})_{1}^{n} \neq (2\mathsf{L}), (4\mathsf{L}, 4\mathsf{L}), (6\mathsf{SL})} R_{4\mathsf{L}}^{\ell_{1}, \ldots, \ell_{n}}(H_{\ell_{1}}, \ldots, H_{\ell_{n}}), \\ e_{u}(y) &=& \displaystyle\sum_{(\ell_{i})_{1}^{n}} R_{\ell}^{\ell_{1}, \ldots, \ell_{n}}(H_{\ell_{1}}, \ldots, H_{\ell_{n}}), \qquad \ell \neq 2\mathsf{L}, 4\mathsf{L}, 6\mathsf{SL}. \end{array}$$

Norm of a trimmed sequence

Given γ -dependent constants A_0 , A_0^R , A_1^R , A_2^R , A, we denote by $||u||_{B(\gamma,\delta)}$ the following norm of a vector $u = (H_\ell)_{\ell \neq 2L, 4L, 6SL} \equiv (u_\ell)_{\ell \in \{2R, 4R, 6R, 8, 10, \ldots\}}$ of irrevelant components (6SL excluded)

$$||u||_{B(\gamma,\delta)} = \max \left\{ \frac{||u_{2R}||_w}{A_0^R \delta^2}, \frac{||u_{4R}||_w}{A_1^R \delta^2}, \frac{||u_{6R}||_w}{A_2^R \delta^3}, \sup_{\ell \geqslant 8} \frac{||u_{\ell}||_w}{A \delta^{k(\ell)}} \right\},$$

where $k(\ell) = \ell/2 - 1$, in terms of which the norm of $y = (\nu, \lambda, u)$ can be rewritten

$$||y||_{Y(\gamma,\delta)} = \max\left\{\frac{|\nu|}{A_0\delta}, \frac{|\lambda|}{A_0\delta}, ||u||_{B(\gamma,\delta)}\right\}.$$

Moreover,

$$\mathfrak{X}_*(x) = -8\lambda^2 \sum_{n=1}^{\infty} \gamma^{(2d-6[\psi])n} g(x\gamma^n).$$

Main result

Choose $d \in \{1, 2, 3\}$, cutoff χ , $N \geqslant 4$, and a compact set $T \subset \mathbb{C}$ as before.

Complex Key Lemma

There exist $\gamma_{\text{kev}} \geqslant 2$ and positive continuous functions

$$\delta_0(\gamma), A_0(\gamma), \{A_k^{\mathsf{R}}(\gamma)\}_{k=0,1,2}, A(\gamma), E_0(\gamma), E_1(\gamma), \qquad \text{on } \gamma \geqslant \gamma_{\mathsf{key}},$$

with the following property: Take any $\gamma \geqslant \gamma_{\text{key}}$, any $0 < \delta \leqslant \delta_0(\gamma)$ and any $y = (\nu, \lambda, u)$ satisfying $\|y\|_{Y(\gamma, \delta)} \leqslant 1$, and apply to it the $R(\varepsilon, \gamma)$ with any $\varepsilon \in T$. Then

$$\left|e_{\nu}^{(0)}(y)\right| \leqslant E_0 \delta^2, \qquad \left|e_{\lambda}^{(0)}(y)\right| \leqslant E_1 \delta^3, \qquad \|e_{\nu}(y)\|_{B(\gamma,\delta)} \leqslant \gamma^{-\overline{D}},$$

$$\left|\partial_{i}e_{\nu}^{(0)}(y)\right| \leqslant \frac{E_{0}\delta^{2}}{A_{0}\delta}, \qquad \left|\partial_{i}e_{\lambda}^{(0)}(y)\right| \leqslant \frac{E_{1}\delta^{3}}{A_{0}\delta}, \qquad \left|\partial_{i}e_{u}(y)\right| \leqslant \frac{\gamma^{-\overline{D}}}{A_{0}\delta}, \qquad i = \nu, \lambda,$$

$$\|\partial_u e_{\nu}^{(0)}(y)\|_{\mathcal{L}(B,\mathbb{R})} \leqslant E_0 \delta^2, \qquad \|\partial_u e_{\lambda}^{(0)}(y)\|_{\mathcal{L}(B,\mathbb{R})} \leqslant E_1 \delta^3, \qquad \|\partial_u e_u(y)\|_{\mathcal{L}(B,B)} \leqslant \gamma^{-\overline{D}},$$

uniformly in $\varepsilon \in T$.

Bounds on e_{μ} : case $\ell \geqslant 8$

We start from the bound on $||(e_u(y))_{\ell}||_w$ with $\ell \geqslant 8$.

Recall

$$(e_u(y))_{\ell} = \sum_{(\ell_i)_1^n} R_{\ell}^{\ell_1, \ldots, \ell_n}(H_{\ell_1}, \ldots, H_{\ell_n}).$$

Previous bounds:

$$\|(e_u(y))_{\ell}\|_{w} \leqslant \gamma^{-\operatorname{Re}D_{\ell}} \|u_{\ell}\|_{w} + \gamma^{-\operatorname{Re}D_{\ell}} \sum_{(\ell_{i})_{1}^{n} \neq \ell} \rho_{l}(H_{\ell_{1}}, \ldots, H_{\ell_{n}}),$$

where H_{ℓ_i} should be interpreted as equal to

- ν , if $\ell_i = 2L$,
- λ , if $\ell_i = 4L$,
- \mathfrak{X}_* , if $\ell_i = 6$ SL,
- u_{ℓ_i} , otherwise.

Recall that $\rho_I = 0$ unless $\sum_i |\ell_i| \ge I + 2(n-1)$.

By using the assumption $||y||_{Y(\gamma,\delta)} \leq 1$, we find

$$\begin{aligned} \|H_{2\mathsf{L}}\|_{w} + \|H_{2\mathsf{R}}\|_{w} \leqslant A_{0}\delta + A_{0}^{R}\delta^{2} &=: b_{0}, \\ \|H_{4\mathsf{L}}\|_{w} + \|H_{4\mathsf{R}}\|_{w} \leqslant A_{0}\delta + A_{1}^{R}\delta^{2} &=: b_{1}, \\ \|H_{6\mathsf{S}\mathsf{L}}\|_{w} + \|H_{6\mathsf{R}}\|_{w} \leqslant C_{\gamma 3}A_{0}^{2}\delta^{2} + A_{2}^{R}\delta^{3} &=: b_{2}, \\ \|H_{\ell}\|_{w} \leqslant A\delta^{k(\ell)} &=: b_{k(\ell)}, \qquad \text{if } \ell \geqslant 8. \end{aligned}$$

Recall $k(\ell) = |\ell|/2 - 1$.

Re-arrange the bounds as:

$$b_k \leqslant A\delta^{\max\{k,1\}}, \qquad k \geqslant 0.$$

- For $k \ge 3$ this is true as an equality by the definition of b_k .
- To have this for k = 0, 1, 2 as well, we will assume (assumptions are marked with \spadesuit):

$$(\spadesuit) \qquad 2 \max (A_0, A_0^R \delta_0, A_1^R \delta_0, C_{\gamma 3} A_0^2 + A_2^R \delta_0) \leqslant A.$$

Recall that

$$\rho_{I}(H_{\ell_{1}},\ldots,H_{\ell_{n}}) := \begin{cases} C_{\gamma}^{n-1} \prod_{i=1}^{n} C_{0}^{|\ell_{i}|} \|H_{\ell_{i}}\|_{w} & \text{if } \sum_{i} |\ell_{i}| \geqslant I + 2(n-1) \\ 0 & \text{otherwise} \end{cases}.$$

We find that

$$\|(e_u(y))_\ell\|_w \leqslant \gamma^{-\operatorname{Re} D_\ell} (A\delta^{k(\ell)} + \Delta^{(1)}_{k(\ell)} + \Delta^{(2)}_{k(\ell)}),$$

where we defined (here $C = C_0^2$):

$$\Delta_k^{(1)} = \sum_{k'=k+1}^{\infty} C^{k'+1} b_{k'}, \qquad \Delta_k^{(2)} = \sum_{(k_i)_{i=1}^n, n \geqslant 2} F_k[(k_i)_1^n],$$

$$F_k[(k_i)_1^n] = \begin{cases} C_{\gamma}^{n-1} \prod_{i=1}^n C^{k_i+1} b_{k_i} & \text{if } \sum_i k_i \geqslant k \\ 0 & \text{otherwise} \end{cases}.$$

Case $\ell \geqslant 8$: Estimates on $\Delta_k^{(i)}$

Recall $b_k \leq A\delta^{\max\{k,1\}}$, for $k \geq 0$, and

$$\Delta_{k}^{(1)} = \sum_{k'=k+1}^{\infty} C^{k'+1} b_{k'}, \qquad \Delta_{k}^{(2)} = \sum_{(k_{i})_{i=1}^{n}, n \geqslant 2} F_{k}[(k_{i})_{1}^{n}],$$

$$F_{k}[(k_{i})_{1}^{n}] = \begin{cases} C_{\gamma}^{n-1} \prod_{i=1}^{n} C^{k_{i}+1} b_{k_{i}} & \text{if } \sum_{i} k_{i} \geqslant k \\ 0 & \text{otherwise} \end{cases}.$$

Lemma

Suppose the nonnegative constants C_{γ} , C, δ , A satisfy

$$(\spadesuit) \qquad C\delta \leqslant 1/4, \qquad C_{\gamma}CA\delta \leqslant 1/2, \qquad C_{\gamma}CA \leqslant 1/2,$$

and that $0 \le b_k \le A\delta^{\max\{k,1\}}$ for all $k \ge 0$. Then we have

$$\Delta_k^{(1)} \leqslant A\delta^{k+1}(2C^{k+2}), \qquad \Delta_k^{(2)} \leqslant A\delta^{\max\{k,2\}} \cdot \begin{cases} C_0 = 4C + 8C^2 + 16C^3 & \text{if } k = 0, 1 \\ 2(2C)^{k+1} & \text{if } k \geqslant 2 \end{cases}.$$

Proof of the Lemma

First bound: Easy. We focus on the second bound.

Extending by zeros: For any sequence $\varkappa = (k_i)_1^n$, we say that a sequence \varkappa' extends \varkappa by m zeros if it is obtained from \varkappa inserting m zeros in arbitrary places.

Define $F_{\text{ext}}[\varkappa]$ as the sum of $F[\varkappa']$ over all \varkappa' extending \varkappa by an arbitrary number of zeros $m \geqslant 0$

$$F_{\mathrm{ext}}[\varkappa] = \sum_{m=0}^{\infty} \sum_{\varkappa': \text{ extends } \varkappa \text{ by } m \text{ zeros}} F[\varkappa'].$$

Since $F[x'] = F[x](C_{\gamma}Cb_0)^m$, we obtain

$$F_{\text{ext}}[\varkappa] \leqslant F[\varkappa] \sum_{m=0}^{\infty} {m+n \choose m} (C_{\gamma}Cb_0)^m = \frac{1}{(1-C_{\gamma}Cb_0)^{n+1}} F[\varkappa].$$

Recall $b_0 \leqslant A\delta$. Thus using $C_{\gamma}CA\delta \leqslant 1/2$ we have

$$F_{\mathsf{ext}}[\varkappa] \leqslant 2^{n(\varkappa)+1} F[\varkappa].$$

Proof of the Lemma

Next, we will sum over sequences with a fixed $\sum k_i$. Namely, we define

$$\Phi_k = \sum_{n=2}^{\infty} \sum_{(k_i)_1^n, \sum k_i = k} F[(k_i)_1^n], \qquad k \geqslant 0.$$

We first estimate Φ_k 's and then convert into the estimate for $\Delta_k^{(2)} = \sum_{k'=k}^{\infty} \Phi_{k'}$.

Consider first $k \ge 2$. By extending by zeroes, using $b_{k_i} \le A\delta^{k_i}$ and some combinatorics, we arrive to

$$\Phi_{k} \leqslant \sum_{n=1}^{k} 2^{n+1} \sum_{(k_{i})_{1}^{n}, \sum k_{i}=k, k_{i} \geqslant 1} F[(k_{i})_{1}^{n}] \leqslant 4C^{k+1}A\delta^{k}(1+2C_{\gamma}CA)^{k-1},$$

which implies

$$\Phi_k \leqslant 2C(2C\delta)^k A, \qquad k \geqslant 2,$$

once we use $C_{\gamma}CA \leqslant 1/2$.

With $C_{\gamma}CA \leq 1/2$ one can also show $F_{\text{ext}}[(k_i)_1^n] \leq 4C^{k+1}A\delta^{k+m}$.

Some computations for the previous slide:

$$\Phi_{k} = \sum_{n=2}^{\infty} \sum_{(k_{i})_{1}^{n}, \sum k_{i} = k} F[(k_{i})_{1}^{n}] \leqslant \sum_{n=1}^{k} 2^{n+1} \sum_{(k_{i})_{1}^{n}, \sum k_{i} = k, k_{i} \geqslant 1} F[(k_{i})_{1}^{n}]$$

Let $(k_i)_1^n$, $\sum k_i = k$, with $m = \#\{k_i = 0, i = 1, ..., n\}$

$$F[(k_i)_1^n] \leqslant C_{\gamma}^{n-1} \prod_{i=1}^n C^{k_i+1} A \delta^{k_i \vee 1} = C_{\gamma}^{n-1} C^{\sum_i k_i + n} A^n \delta^{\sum_i k_i + m} \leqslant C_{\gamma}^{n-1} C^{k+n} A^n \delta^{k+m}.$$

Then, for $k \ge 2$, m = 0,

$$\Phi_{k} \leqslant 4C^{k+1}A\delta^{k+m} \sum_{n=1}^{k} (2C_{\gamma}CA)^{n-1} \binom{k-1}{n-1} \leqslant 4C^{k+1}A\delta^{k} (1+2C_{\gamma}CA)^{k-1}.$$

Proof of the Lemma

We bound Φ_k for k = 0, 1.

For k = 0, Φ_0 involves the sequence (0,0) and its extensions by zeros. We have then

$$\Phi_0 = F_{\text{ext}}[(0,0)] \leqslant 4CA\delta^2.$$

For k = 1, Φ_1 involves the sequences (1,0), (0,1) and their extensions by zeros. Then

$$\Phi_1 = 2F_{\text{ext}}[(1,0)] \le 8C^2A\delta^2$$
.

Estimate $\Delta_k^{(2)} = \sum_{k'=k}^{\infty} \Phi_{k'}$ summing up in geometric progression, which is possible since $2C\delta \leqslant 1/2$, and adding Φ_0 and Φ_1 when needed. We thus obtain

$$\Delta_k^{(2)} \leqslant C(2C\delta)^k A, \qquad k \geqslant 2,
\Delta_1^{(2)} = \Phi_1 + \Delta_2^{(2)} \leqslant (8C^2 + 16C^3)A\delta^2,
\Delta_0^{(2)} = \Phi_0 + \Phi_1 + \Delta_2^{(2)} \leqslant (4C + 8C^2 + 16C^3)A\delta^2,$$

which concludes the proof.

We find

$$\|(e_u(y))_\ell\|_w \leqslant \gamma^{-\operatorname{Re} D_\ell} A \delta^{k(\ell)} (1 + 2C^{k(\ell)+2} \delta + 2(2C)^{k(\ell)+1}).$$

It follows

$$\|(e_u(y))_\ell\|_w \leqslant \gamma^{-\overline{D}} A \delta^{k(\ell)}, \qquad \ell \geqslant 8,$$

as long as we impose

$$1 + 2C^{k(\ell)+2}\delta + 2(2C)^{k(\ell)+1} \leqslant \gamma^{\operatorname{Re}D_{\ell} - \overline{D}}.$$

Given the form of this inequality, it is sufficient to check that it holds for $\ell = 8$, and that the l.h.s. grows slower than the r.h.s. as $\ell \to \ell + 2$, which amounts to two requirements:

$$(\spadesuit) \qquad 1 + 2C^4\delta + 2(2C)^4 \leqslant \gamma^{\operatorname{Re}D_8 - \overline{D}}, \qquad \max(1, C, 2C) \leqslant \gamma^{d/2 - \operatorname{Re}\varepsilon}.$$

Next, we estimate derivatives.

Consider a vector $\delta y = (\delta \nu, \delta \lambda, \delta u)$ satisfying $||\delta y|| \le 1$, and a trimmed coupling sequence δH_{ℓ} which contains the couplings in δy and, in addition, the coupling δH_{6SL} corresponding to the variation of \mathfrak{X}_* .

We have

$$\nabla_{y}(e_{u}(y))_{\ell} \, \delta y = \sum_{(\ell_{i})_{1}^{n}} \sum_{i=1}^{n} \, R_{\ell}^{\ell_{1}, \dots, \ell_{n}}(H_{\ell_{1}}, \dots, \delta H_{\ell_{i}}, \dots, H_{\ell_{n}}),$$

and thus

$$\|\nabla_{y}(e_{u}(y))_{\ell} \delta y\|_{w} \leqslant \gamma^{-\operatorname{Re}D_{\ell}} \|\delta H_{\ell}\|_{w} + \gamma^{-\operatorname{Re}D_{\ell}} \sum_{(\ell_{i})_{1}^{n} \neq \ell} \sum_{i=1}^{n} \rho_{l}(H_{\ell_{1}}, \ldots, \delta H_{\ell_{i}}, \ldots, H_{\ell_{n}}).$$

Note that $\|\delta H_{6SL}\|_{w} \leq 2C_{3\gamma}A_{0}^{2}\delta^{2}$. We will increase $C_{3\gamma}$ by factor 2.

Then all couplings δH_ℓ satisfies the same bounds as the ones on H_ℓ used to estimate $\|(e_u(y))_\ell\|_w$.

It follows that the functions ρ_l can be estimated in exactly the same way.

This gives

$$\|\nabla_{y}(e_{u}(y))_{\ell} \,\delta y\|_{w} \leqslant \gamma^{-\operatorname{Re}D_{\ell}} (A\delta^{k(\ell)} + \Delta_{k(\ell)}^{(1)} + \tilde{\Delta}_{k(\ell)}^{(2)}),$$

where $\tilde{\Delta}_{k}^{(2)}$ differs from $\Delta_{k}^{(2)}$ in that $F_{k}[(k_{i})]$ is replaced by

$$\tilde{F}_k[(k_i)_1^n] = nF_k[(k_i)_1^n],$$

where the factor n accounts for the sum $\sum_{i=1}^{n}$.

We increase C_{γ} in by 2 to absorb this factor (note $n \leq 2^{n-1}$), so that both \tilde{F}_k and F_k can be considered to satisfy the same bound.

Then, under the same assumptions for the bound on $\|(e_u(y))_\ell\|_w$, we will have

$$\|\nabla_{y}(e_{u}(y))_{\ell} \delta y\|_{w} \leqslant \gamma^{-\overline{D}} A \delta^{k(\ell)}, \qquad \ell \geqslant 8.$$

Taking into account the assumed bounds on couplings δy , this inequality is precisely what is asserted in the Key Lemma concerning the part of e_u with $\ell \geqslant 8$.

Bounds on e_u : case $\ell = 6R$

Recall $R_{6R}^{\ell_1,\dots,\ell_n} = DS_6^{\ell_1,\dots,\ell_n}$ if $(\ell_i)_1^n \neq (6SL), (4L,4L)$, and zero otherwise.

From the definitions and the bounds on $R_{6R}^{\ell_1,\dots,\ell_n}$ we find that

$$\|(e_u(y))_{6\mathsf{R}}\|_w \leqslant \gamma^{-\mathsf{Re}\,D_6} \|u_{6\mathsf{R}}\|_w + \gamma^{-\mathsf{Re}\,D_6} \sum_{(\ell_i)_1^n \neq (6\mathsf{SL}), (6\mathsf{R}), (4\mathsf{L}, 4\mathsf{L})} \rho_6[(\ell_i)_1^n].$$

By repeating a discussion analogous to that of the previous part, we get

$$\|(e_u(y))_{6\mathsf{R}}\|_w \leqslant \gamma^{-\mathsf{Re}D_6} (A_2^R \delta^3 + \Delta_2^{(1)} + \Delta_{2;6\mathsf{R}}^{(2)}),$$

where $\Delta_{2;6R}^{(2)}$ is defined analogously to $\Delta_2^{(1)}$: $k(\ell) = |\ell|/2 - 1$

$$\Delta_{2;6R}^{(2)} = 2C_{\gamma}C^{4}b_{1}b_{1}^{R} + \sum_{(k_{i})_{1}^{n} \neq (1,1)}^{n \geqslant 2} F_{2}[(k_{i})_{1}^{n}],$$

with $b_1^R = A_1^R \delta^2$. The difference is due to the fact that there is no (4L, 4L).

Case $\ell = 6R$

It is convenient to define, for any subsequence $\varkappa = (k_i)_1^n$,

$$F_{\mathsf{ext}}[arkappa] = \sum_{arkappa': \; \mathsf{extends} \; arkappa \; \mathsf{by} \; \geqslant 0 \; \mathsf{zeros}} F[arkappa'].$$

Split the second term in $\Delta_{2;6R}^{(2)}$ into the contributions of sequences (1,1,0), (2,0), their permutations and extensions by zero and sequences with $\sum k_i \ge 3$ which form $\Delta_3^{(2)}$:

$$\Delta_{2:6R}^{(2)} = 2C_{\gamma}C^4b_1b_1^R + 2F_{\text{ext}}[(2,0)] + 3F_{\text{ext}}[(1,1,0)] + \Delta_3^{(2)}.$$

One can show that, with the same assumptions as for $\ell \geqslant 8$,

$$F_{\text{ext}}[(k_i)_1^n] \leqslant 4C^{k+1}A\delta^{k+m}$$
,

where $k = \sum k_i$ and m is the number of zeros in the sequence $(k_i)_1^n$.

Case $\ell = 6R$

We have

$$\Delta_{2;6R}^{(2)} = 2C_{\gamma}C^4b_1b_1^R + 2F_{\text{ext}}[(2,0)] + 3F_{\text{ext}}[(1,1,0)] + \Delta_3^{(2)}.$$

By the bound on $\Delta_k^{(2)}$ with k=3, $b_1^R \leqslant A_1^R \delta^2$, $C_\gamma C A \leqslant 1/2$, and $F_{\rm ext}[(k_i)_1^n] \leqslant 4C^{k+1}A\delta^{k+m}$ we get

$$\Delta_{2;6R}^{(2)} \leq (C^3 A_1^R + (8C^3 + 12C^3 + 2(2C)^4)A)\delta^3.$$

This implies

$$\|(e_u(y))_{6R}\|_{w} \leq \gamma^{-\text{Re}\,D_6} \delta^3(A_2^R + 2C^4A + C^3A_1^R + (20C^3 + 2(2C)^4)A),$$

which is smaller than $\gamma^{-\overline{D}}A_2^R\delta^3$, provided that

$$(\spadesuit) \qquad A_2^R + 2C^4A + C^3A_1^R + (20C^3 + 2(2C)^4)A \leqslant \gamma^{\text{Re}D_6 - \overline{D}}A_2^R.$$

Bounds on e_{μ} : case $\ell = 4R$

From the definitions and the bounds on $R_{4R}^{\ell_1,\ldots,\ell_n}$ we find that

$$\|(e_{u}(y))_{4\mathsf{R}}\|_{w} \leqslant \gamma^{-\mathsf{Re}D_{4}-1}\|u_{4\mathsf{R}}\|_{w} + \gamma^{-\mathsf{Re}D_{4}} \sum_{(\ell_{i})_{1}^{n} \neq (4\mathsf{L}), (4\mathsf{R})} \rho_{4}[(\ell_{i})_{1}^{n}],$$

so that

$$\|(e_u(y))_{4\mathsf{R}}\|_{\mathsf{W}} \leqslant \gamma^{-\mathsf{Re}\,D_4-1} (A_1^R \delta^2 + \gamma \Delta_1^{(1)} + \gamma \Delta_1^{(2)}),$$

which gives

$$\|(e_u(y))_{4\mathsf{R}}\|_w \leqslant \gamma^{-\mathsf{Re}\,D_4-1}\delta^2(A_1^R + \gamma A(2C^3) + \gamma C_0A).$$

This is smaller than $\gamma^{-\overline{D}}A_1^R\delta^2$, provided that

$$(\spadesuit) \qquad A_1^R + \gamma A(2C^3 + C_0) \leqslant \gamma^{\operatorname{Re} D_4 + 1 - \overline{D}} A_1^R.$$

Bounds on e_{μ} : case $\ell = 2R$

From the definitions and the bounds on $R_{2R}^{\ell_1,\dots,\ell_n}$ we find that

$$\|(e_{u}(y))_{2\mathsf{R}}\|_{w} \leqslant \gamma^{-\mathsf{Re}D_{2}-2}\|u_{2\mathsf{R}}\|_{w} + \gamma^{-\mathsf{Re}D_{2}} \sum_{(\ell_{i})_{1}^{n} \neq (2\mathsf{L}), (2\mathsf{R}), (4\mathsf{L})} \rho_{2}[(\ell_{i})_{1}^{n}],$$

so that

$$\|(e_u(y))_{2\mathsf{R}}\|_w \leqslant \gamma^{-\mathsf{Re}D_2-2} (A_0^R \delta^2 + \gamma^2 \Delta_{0;2\mathsf{R}}^{(1)} + \gamma^2 \Delta_0^{(2)}),$$

where

$$\Delta_{0:2R}^{(1)} = C^2 b_1^R + \Delta_1^{(1)} \leqslant C^2 A_1^R \delta^2 + A \delta^2 (2C_3^3).$$

Therefore,

$$\|(e_u(y))_{2\mathsf{R}}\|_w \leqslant \gamma^{-\mathsf{Re}\,D_2-2}\delta^2(A_0^R + \gamma^2(C^2A_1^R + 2C^3A + C_0A)).$$

This is smaller than $\gamma^{-\overline{D}}A_0^R\delta^2$, provided that

$$(\spadesuit) \qquad A_0^R + \gamma^2 (C^2 A_1^R + 2C^3 A + C_0 A) \leqslant \gamma^{\text{Re} D_2 + 2 - \overline{D}} A_0^R.$$

Bounds on $e_{ u}^{(0)}$

$$e_{\nu}^{(0)}(y) = \sum_{(\ell_i)_1^n \neq (2\mathsf{L}), (4\mathsf{L})} R_{2\mathsf{L}}^{\ell_1, \dots, \ell_n}(H_{\ell_1}, \dots, H_{\ell_n}).$$

From the definitions and the bounds on $R_{2L}^{\ell_1,\dots,\ell_n}$ we find that

$$|e_{\nu}^{(0)}(y)| \leqslant \gamma^{-\operatorname{Re} D_2} \sum_{(\ell_i)_1^n \neq (2\mathsf{L}), (2\mathsf{R}), (4\mathsf{L})} \rho_2[(\ell_i)_1^n],$$

so that

$$|e_{\nu}^{(0)}(y)| \leqslant \gamma^{-\operatorname{Re} D_2} (\Delta_{0;2R}^{(1)} + \Delta_0^{(2)}),$$

which gives

$$|e_{\nu}^{(0)}(y)| \leqslant \gamma^{-\operatorname{Re} D_2} \delta^2 (C^2 A_1^R + 2C^3 A + C_0 A).$$

We thus get the bound with

$$E_0 = \gamma^{-\text{Re}D_2}(C^2A_1^R + 2C^3A + C_0A).$$

Bounds on $e_{\lambda}^{(0)}$

Recall,

$$e_{\lambda}^{(0)}(y) = \sum_{(\ell_i)_1^n \neq (4\mathsf{L}), (4\mathsf{L}, 4\mathsf{L}), (6\mathsf{SL})} R_{4\mathsf{L}}^{\ell_1, \dots, \ell_n}(H_{\ell_1}, \dots, H_{\ell_n}).$$

From the definitions and the bounds on $R_{4L}^{\ell_1,\dots,\ell_n}$ we find that

$$\left| e_{\lambda}^{(0)}(y) \right| \leqslant \gamma^{-\operatorname{Re}D_4} \sum_{\substack{(\ell_i)_1^n \neq (4\mathsf{L}), (4\mathsf{R}), (6\mathsf{SL}), \\ (4\mathsf{L}, 4\mathsf{L}), (4\mathsf{L}, 2\mathsf{L}), (4\mathsf{R}, 2\mathsf{L})}} \rho_4[(\ell_i)_1^n] \leqslant \gamma^{-\operatorname{Re}D_4} \left(\Delta_{1;\lambda}^{(1)} + \Delta_{1;\lambda}^{(2)} \right),$$

where

$$\Delta_{1;\lambda}^{(1)} = C^3 b_2^R + \Delta_3^{(1)} \leqslant C^3 A_2^R \delta^3 + A \delta^3 (2C^4),$$

$$\Delta_{1;\lambda}^{(2)} = 2C_{\gamma} C^4 b_1 b_1^R + \sum_{(k_i)_1^n \neq (1,1)}^{n \geqslant 2} F_2[(k_i)_1^n] \equiv \Delta_{2;6R}^{(2)},$$

where excluded (1,0), (1,0,0), etc, are excluded from the second term.

Bounds on $e_{\lambda}^{(0)}$

We see that $\Delta_{1:\lambda}^{(2)}$ is identical to $\Delta_{2:6R}^{(2)}$ and therefore satisfies the same bound

$$\Delta_{1;\lambda}^{(2)} \leqslant (C^3 A_1^R + (8C^3 + 12C^3 + 2(2C)^4)A)\delta^3.$$

Therefore, we get

$$|e_{\lambda}^{(0)}(y)| \leqslant \gamma^{-\operatorname{Re} D_4} \delta^3(C^3 A_2^R + 2C^4 A + C^3 A_1^R + (20C^3 + 2(2C)^4)A).$$

We thus get the the bound, with

$$E_1 = \gamma^{-\text{Re}\,D_4}(C^3A_2^R + 2C^4A + C^3A_1^R + (20C^3 + 2(2C)^4)A).$$

Finally, we need to show that all the six \spadesuit -constraints can be satisfied consistently.

Recall the constraints:

$$2 \max (A_0, A_0^R \delta_0, A_1^R \delta_0, C_{\gamma 3} A_0^2 + A_2^R \delta_0) \leqslant A,$$

$$C\delta \leqslant 1/4, \qquad C_{\gamma} C A \delta \leqslant 1/2, \qquad C_{\gamma} C A \leqslant 1/2,$$

$$1 + 2C^4 \delta + 32C^4 \leqslant \gamma^{\operatorname{Re} D_8 - \overline{D}}, \qquad \max(1, C, 2C) \leqslant \gamma^{d/2 - \operatorname{Re} \varepsilon},$$

$$A_2^R + C^3 A_1^R + (20C^3 + 34C^4) A \leqslant \gamma^{\operatorname{Re} D_6 - \overline{D}} A_2^R,$$

$$A_1^R + \gamma A(2C^3 + C_0) \leqslant \gamma^{\operatorname{Re} D_4 + 1 - \overline{D}} A_1^R,$$

$$A_0^R + \gamma^2 (C^2 A_1^R + (2C^3 + C_0) A) \leqslant \gamma^{\operatorname{Re} D_2 + 2 - \overline{D}} A_0^R.$$

Replace all γ -independent constants in the l.h.s. of the \spadesuit -constraints by their maximum \overline{C} .

Also let $\overline{C}_{\gamma} = \max(C_{\gamma}, C_{\gamma 3})$ and

$$Z = \min_{\varepsilon \in T} \left\{ \operatorname{Re} D_8 - \overline{D}, d/2 - \operatorname{Re} \varepsilon, \operatorname{Re} D_6 - \overline{D}, \operatorname{Re} D_4 + 1 - \overline{D}, \operatorname{Re} D_2 + 2 - \overline{D} \right\} > 0.$$

List of constraints which imply the \spadesuit -constraints for any $\varepsilon \in T$:

$$\overline{C} \leqslant \gamma^Z, \qquad \overline{C}\delta_0 \leqslant 1, \qquad \overline{C}\overline{C}_{\gamma}A \leqslant 1,$$
 (\bigs_1)

$$\max\left(A_0, A_0^R \delta_0, A_1^R \delta_0, \overline{C}_{\gamma} A_0^2 + A_2^R \delta_0\right) \leqslant \frac{A}{2}, \tag{\clubsuit_2}$$

$$A_2^R + \overline{C}(A_1^R + A) \leqslant \gamma^Z A_2^R, \quad A_1^R + \overline{C}_{\gamma} A \leqslant \gamma^Z A_1^R, \quad A_0^R + \overline{C}_{\gamma}^2 (A_1^R + A) \leqslant \gamma^Z A_0^R. \quad (\clubsuit_3)$$

The only remaining varying parameter is γ .

We should now choose γ_{key} and δ_0 , A_0 , $\{A_k^R\}_{k=0,1,2}$, A, E_0 , E_1 , which are γ -dependent and positive, so that all these constraints hold for $\gamma \geqslant \gamma_{\text{key}}$.

We can satisfy the line (\spadesuit_1) taking γ large, then A and δ_0 small.

To satisfy line (\spadesuit_3) we require

$$A_1^R, A \leqslant A_2^R, \qquad \gamma A \leqslant A_1^R, \qquad \gamma^2 A, \gamma^2 A_1^R \leqslant A_0^R,$$

$$1 + 2\overline{C} \leqslant \gamma^Z, \qquad 1 + \overline{C} \leqslant \gamma^Z.$$

The last constraint on γ is of the same type as $\overline{C} \leqslant \gamma^Z$.

Joining the inequalities above and (\spadesuit_2) , the resulting set of constraints reduces to

$$A_0 \leqslant \frac{A}{2}, \qquad \overline{C}_{\gamma} A_0^2 \leqslant \frac{1}{4} A,$$

$$A_2^R \in \left[A, \frac{1}{4\delta_0} A \right], \qquad A_1^R \in \left[\frac{\gamma A}{2\delta_0} A \right], \qquad A_0^R \in \left[\frac{\gamma^2 A}{2\delta_0} A \right],$$

$$A_1^R \leqslant A_2^R, \qquad \frac{\gamma^2 A_1^R}{2\delta_0} \leqslant A_0^R.$$

Here is then the final order in which all choices have to be made:

- γ_{key} is chosen as the minimal $\gamma \geqslant 2$ satisfying $\overline{C} \leqslant \gamma^Z$ in (\spadesuit_1) and $1 + \overline{C}, 1 + 2\overline{C} \leqslant \gamma^Z$.
- We then pick any $\gamma \geqslant \gamma_{\text{key}}$ and compute the constant \overline{C}_{γ} .
- We then satisfy $\overline{C}\overline{C}_{\gamma}A \leqslant 1$ in (\spadesuit_1) by choosing $A = (\overline{C}\overline{C}_{\gamma})^{-1}$.
- We then choose A_0 sufficiently small to satisfy $A_0 \leqslant A/2$ and $\overline{C}_{\gamma} A_0^2 \leqslant A/4$.
- Finally, we choose $\delta_0 = \min(\overline{C}^{-1}, 1/(2\gamma^3))$, which satisfies $\overline{C}\delta_0 \leqslant 1$
 - \rightarrow All the assumptions in (\spadesuit_1) are satisfied.
- At the same time, thanks to $\delta_0 \leq 1/(2\gamma^3)$, we can choose A_j^R as follows

$$A_2^R = \frac{1}{4\delta_0}A, \qquad A_1^R = \gamma A, \qquad A_0^R = \frac{1}{2\delta_0}A.$$

 \rightarrow This implies (\spadesuit_2) and (\spadesuit_3) .

This concludes the proof of the Key Lemma.

Appendix: Definition of R_ℓ^ℓ

For $(n; (\ell_1, ..., \ell_n)) = (1; \ell)$ we have

$$R_{\ell}^{\ell} = D$$
,

since in this case $S_I^{\ell} = \mathbf{1}$ and trimming is not needed. In all the other cases $(n; (\ell_1, ..., \ell_n)) \neq (1; \ell)$, recalling that $I = |\ell|$, we have

$$R_{\ell}^{\ell_{1},...,\ell_{n}} = D \begin{cases} S_{l}^{\ell_{1},...,\ell_{n}} & \ell \geqslant 8 \\ T_{\ell}^{l} S_{l}^{\ell_{1},...,\ell_{n}} & \ell \in \{2L,2R,4L,4R\} \end{cases}$$

$$R_{6SL}^{\ell_{1},...,\ell_{n}} = D \begin{cases} S_{6}^{4L,4L} & (\ell_{i})_{1}^{n} = (4L,4L) \\ 0 & \text{otherwise} \end{cases}$$

$$R_{6R}^{\ell_{1},...,\ell_{n}} = D \begin{cases} S_{6}^{\ell_{1},...,\ell_{n}} & (\ell_{i})_{1}^{n} \neq (6SL), (4L,4L) \\ 0 & \text{otherwise} \end{cases}$$

where $T_{\ell}^{I}: B_{I} \rightarrow B_{\ell}$ is the trimming map.

Just as $S_{\ell}^{\ell_1,\ldots,\ell_n}$, the map $R_{\ell}^{\ell_1,\ldots,\ell_n}$ is symmetric and it vanishes unless $\sum_i |\ell_i| \geqslant l + 2(n-1)$.