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Our goal in this talk is to make sense of the model in finite volume, and give a
derivation of the equation

Heff(B; xB)=A
X
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Bi=B

X
A1; : : : ;An
Ai�Bi

(¡)#
Z
ddxB�C(xB�)
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H(Ai; xAi)

where the sum is over all ways to represent B as a concatenation B1+ : : :+Bn,
and then over all ways to extend Bi 's to Ai�Bi. The integration is over points
xB�;B� =B�1+ : : :+B�n;B� i=AinBi. A denotes the antisymmetrization operation.



Overview:

1. Model in finite volume

2. Effective action in finite volume

3. Norms on Banach space of interactions

4. Effective action in finite volume(Statement and proof idea of the main lemma)



1. Model in finite volume

We consider the model in the region V = [¡V /2; V /2]d with periodic boundary
conditions, so the fields can be expanded into Fourier series

 a(x)=
1
V d

X
k2KV

 a;k e
ikx

whereKV =(2�/V )Zd\ supp� and � is our UV-cutoff whose supp� is compact
hence only finite non-zero terms in the sum. We truncate away all other momenta
because they have zero propagator. The coefficients of the Fourier expansion are
Grassmann variables.



Then finite volume gaussian measure d�P ;V is a finite-dimensional measure over
Grassmann variables  a;k

d�P ;V ( )=Pf¡1
Y

 a;k;k2KV

d a;k e
S2;V ( )

where

S2;V =
1

2V d

X
k2KV

P̂ (k)¡1
ab a;k b;¡k

where the normalization factor Pf> 0 is the Pfaffian of S2;V .



This is a meaningful finite volume version of the formal Gaussian Grassmann
measure:

d�P( )=D eS2( )

S2( )=
1
2

Z
dd k
(2�)d

P̂ (k)¡1
ab a(k)  b (¡k)



Then we can compute the propagator in this finite volume setting

h a(x)  b(y)i=
abPV (x¡ y)

where

PV (x)=
1

V d

X
k2(2�/V )Zd

P̂ (k) eikx ;with P̂ (k)=
�(k)

jk j
d

2
+"

For fixed x and V !1, we have PV (x)! P (x), since a Gaussian measure is
completely determined by it correlation function, in this sense we can say that
d�P ;V! d�P .



The interacting Grassmann measure is then defined as

ZV
¡1 d�P ;V ( ) e

sHV ( )

where

HV ( )=
X
A

Z
V l
ddxHV (A;x)	(A;x)

and

ZV =

Z
d �P ;V ( ) e

sHV ( ) (partition function)

Here the factor s is for further convenience, eventually we will set s= 1. The
model is well defined when ZV =/ 0. They are polynomials in s.(Thus analytic)



2. Effective action in finite volume

In the first talk we talked about the Integrating-out, we split the field  as
 =  + � where   is the low-momentum component of  , we also split the
Grassmann propagator as

P (x)=P(x)+ g(x); P̂(k)=
� ( k)

jk j
d

2
+"
; ĝ(k)=

�(k)¡ � ( k)

jk j
d

2
+"

and then definine the efective interaction by eliminating �,

eHeff( )=

Z
d �g(�) e

H ( +�)



Now we try to do it in finite volume.

Define d�g;V (�) in the same way as d�P ;V ( ) and then consider function

I(s;  )=

Z
d �g;V (�) e

sHV ( +�)

we see that I(s;  )= esHV ( ) p(s;  ) where p(s;  ) is a polynomial in s, by the
special form of HV and the rules of Grassman calculus.



As we see in the first talk we hope to find Heff
V (s;  ) such that

eHeff
V (s; )= I(s;  )

We define Heff
V (s;  ) by the perturbative expansion as we did in the second talk

Heff
V (s;  )=

X
B

Z
VjBj

ddxHeff
V (s;B; xB)	(B; xB)

where Heff
V (s;B; xB) is given by

Heff
V (s;B;xB)=A
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here CV is the connected expectation with finite-volume propagtors

CV (xB�)= h�(B� 1;xB� 1); : : : ; �(B� n;xB�n)ic



We claim that the so definedHeff
V (s;  ) satisfies eHeff

V (s; )=I(s;  ), this is because:

1. The series of Heff
V (s;B; xB) converges and defines Heff

V (s;B;xB) as analytic
L1 -valued functions in the disk jsj< 2 (from main lemma below).

2. Since, by perturbation theory, eHeff
V (s; ) and I(s;  ) have the same Taylor series

in s, we conclude eHeff
V (s; )= I(s;  ) is satisfied in the disk jsj<2 where they are

both analytic, in particular at s=1.

3. This concludes that above formula for Heff
V (s;B;xB) gives the correct effective

action in finite volume.



3. Norms on Banach space of interactions

First let me remind you the notations

	A=

(
 a; A= a
@� a; A=(a; �)

; 	(A; x)=
Y
i=1

l

	Ai(xi)

where A=(A1; : : : ; Al) and x=(x1; : : : ; xl) are finite sequences. jAj will denote
the length of A, and d(A) the number of derivative fields in 	(A; x).



An interaction H( ) is a sum of terms with some kernels H(A; x):

H( )=
X
A

Z
ddxH(A;x)	(A;x)

where the number of each jAj is even, each H(A; x) is antisymmetric by the
Grassman nature of the fields.

Examples are the local quadratic and quartic interactions in the first talk.



We can divide the kernels into groups(couplings) according to the length jAj
(which is also the number of the legs in Feynman diagram):

Hl= fH(A; x)gjAj=l

For example the local quadratic interaction is in H2 and local quartic interaction
is in H4.

We will study these groups more carefully in later talks.



In order to study the infinite volume limit, we need norms on these groups of
coupling Hl. The size of interaction kernels is measured by means of the weighted
L1 norm:

kH(A)kw=
Z
x1=0

ddxjH(A;x)jw(x)

where w(x) is a translationally invariant weight function, by the translation invari-
ance property, here we perform the integral fixing one of the x coordinates to zero.
We also define

jHljw=max
jAj=l

kH(A)kw



We have to choose suitable w(x) for our situation.

We should incorporate the information about the decay of the kernels H(A; x)
induced by the decay of propagator, whose decay property is induced from UV-
cutoff function �2Gs; s> 1(Gevrey class).

For propagator P induced from UV-cutoff function �2Gs; s > 1(Gevrey class),
we know the following inequality:

jP (x)j; j@�P (x)j; j@� @�P (x)j6M(x)�C�1 e¡C�2jx/ j
�

(x2Rd)

where �=1/s< 1. The constants C�1, C�2 depend on � but are independent of
. Our kernels are expected to decay with the same rate.



To incorporate the information about the decay of the kernelsH(A;x), we choose

w(x) growing with a similar rate. A convenient choice turns out to be

w(x)= eC�(St(x)/)
�

where St(x) is the Steiner diameter of the set x, it is defined as the length of the
shortest tree � connecting the points in x, and let C� = 1

2
C�2.



4. Statement and proof of the main lemma

For any kernel H(A;x) we consider corresponding finite-volume interaction with
kernels given by periodization

HV (A; (0; x2; : : : ; xl))=
X

ri2Zd;i=2 : : : l

H(A; (0; x2+ r2V ; : : : ; xl+ rlV ))



Lemma 1. If there exists A> 0 and � > 0 such that, for any infinite volume
interaction satisfying

jHljw6A�min(1;l/2¡1) (l> 2)

and defining the finite volume interactions by periodization for any V >1, we have

(a) the kernels of Heff and of Heff
V with s = 1 are well defined (the series is

convergent in L1);

(b) the kernels of Heff
V (s) are well defined and analytic L1 -valued functions in

the disk jsj< 2;

(c) for any B we have Heff
V (B;x)!Heff(B;x) as V !1 in the sense of L1 norm

on any fixed bounded subset of (Rd)l.



We see that claim (a) for Heff
V is a consequence of (b).

For (b), the idea is to bound the L1 norm for n-th term of the series for Heff
V , which

is X
P
Bi=B;Ai�Bi

jsjn
n!

Z
V jAj;x1=0

ddxAjCV (xB�)j
Y
i=1

n

jHV (Ai;xAi)j

where

A=A1+ � � �+An

CV (xB�)= h�(B� 1;xB� 1); : : : ; �(B� n;xB�n)ic

which is defined by propagator gV .



Here gV is periodization of g

gV (x)=
1
V d

X
k2(2�/V )Zd

ĝ(k) eikx=
X
r2Zd

g (x+ r V )

A few facts:

1. By the Gevrey class property of gV and GKL bound:

jCV (xB�)j6 (CGH;V )
1

2

P
ili
X
T

Y
(xx0)2T

MV (x¡x0)

where jAij= li, T is the set of all anchored trees.
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3. Since

jHljw6A�min(1;l/2¡1) (l> 2) and NT 6n!4
P
li

then X
P
Bi=B;Ai�Bi
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The last inequality partly comes from uniformly boundedness of 16N (d+1)CGH;V
1/2

and jMV j1n¡1 with respect to V .

See appendix E and F for various estimations.

For part (c),

Fix a bounded subset of (Rd)l , W.L.O.G, we assume to be centered in the origin,
and we call it V0. We need to show

A
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tends to 0 as V!1. The idea is to bound each n-th term by spliting the integral.
We multiply the integrand in absolute value of integral w.r.t. V jB� j by

1=1 (StV (xA)6V /4)+1 (StV (xA)>V /4)

where finite volume Steiner diameter StV(x) is the length of the shortest tree on
the torus which connects all points in x=(x1; : : : ; xl), clearly we have the bound

StV (x)6 min
r2Zdl

St(x+ rV )

and do the same for the integral over RjB� jd with standard Steiner diameter.



Thus we can bound each n-th term in the above summation by jV0j (R1;n+R2;n+
R3;n) where, R1;n,R2;n,R3;n are
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In fact all these three parts summation over n are bounded by functions of V tends
to 0 exponentially fast.

Facts:

1. With the same method in part (b), one can get a bound for R1;n in the form

R1;n6 e¡Cw(V /(4))
�

�
C�

1¡C�

�n
similar method and bound can be deduced for R2;n.

2. To bound the R3;n. The idea is to write the integrand

CV (xB�)
Y
i=1

n

HV (Ai; xAi)¡C(xB�)
Y
i=1

n

H(Ai; xAi)



in telescopic form as the sum of n + 1 terms, like

CV (xB�)
Y
i=2

n

HV (Ai; xAi)(HV (A1; xA1)¡H(A1; xA1))+

CV (xB�)H(A1; xA1)
Y
i=3

n

HV (Ai; xAi)(HV (A2; xA2)¡H(A2; xA2))+ � � �



in each of which either a difference CV (xB�)¡C(xB�) or HV (Ai;xAi)¡H(Ai;xAi),
the integral involve HV (Ai;xAi)¡H(Ai;xAi) part can be bounded by a function
of V with from

A�min(1;l/2¡1)e¡Cw(V /(2))
�

For CV (xB�)¡C(xB�), use BBF formula

C(xB� )=
X
T

Y
(xx0)2T

g (x¡x0)
Z
d�T(r)detN

CV (xB�)=
X
T

Y
(xx0)2T

gV (x¡x0)
Z
d�T(r)detNV

where N =N (r) is a Gram matrix .



Again write the difference into the telescopic form and bound involving term
gV (x¡ x0)¡ g (x¡ x0) or detNV ¡ detN by exponentially decay functions of
V (also exponentially decay after sum up index n).

So the convergence in L1 is true.


