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Applications of RG approach in other areas

This talk is based on the first of two papers:

Bricmont, Kupiainen, Lin: Renormalization group and asymptotics of
solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. (1994)

Bricmont, Kupiainen: Renormalization group and the Ginzburg-Landau
equation, Comm. Math. Phys. (1992)

developed with the aim of showing the relevance of the RG approach in other
branches of mathematics outside of QFT, in particular the asymptotic
behaviour of nonlinear PDEs.

For other applications see also:

Bricmont, Gawedzki, Kupiainen: KAM theorem and quantum field theory,
Comm. Math. Phys. (1999)

Li, Sinai: Blow ups of complex solutions of the 3D Navier–Stokes system and
renormalization group method, JEMS (2008)

Kupiainen: Renormalization group and stochastic PDEs, Ann. H. Poincaré
(2016)
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Our main goal

Consider for a 1-dimensional PDE of the form

∂tu = ∂2xu + F (u, ∂xu, ∂
2
xu)

with initial time t = 1. Reference example: heat equation with absorption

∂tu = ∂2xu − up, p ≥ 0.

We are interested in the asymptotics of u of the form

u(x , t) ∼ t−
α
2 f ∗(t−

1
2 x) as t →∞.

Classical approach consists of:

1) finding a scale-invariant solution (assuming F is scale-invariant), which
reduces to solving an ODE for f ∗;

2) establishing stability of such solution (exploiting scale invariance of the PDE).

Drawbacks: it requires to deal with positive solutions u ≥ 0; stability often
involves the maximum principle, not suitable if ∂2x is replaced by fractional
Laplacian −(−∆)β/2; not suited for F not scale-invariant.
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The renormalization group approach

The RG method transforms the problem of the large time limit into an iteration
of a fixed time problem followed by a scaling transformation.

Given F and a solution u to the PDE, we define for some α ≥ 0, L > 1 to be
chosen later the scaling operator

uL(t, x) = Lαu(L2t, Lx);

observe that if u solves the PDE for F , then uL solves

∂tuL = ∂2xuL + FL(uL, ∂xuL, ∂
2
xuL)

where now FL(a, b, c) := L2+αF (L−αa, L−1−αb, L−2−αc).

Let us assume we are given a Banach space S of initial data to the PDE which is
invariant under the action of the RG map

R f = RL,F f := uL(x , 1) = Lαu(L2, Lx),

where u denotes the solution with u(1, x) = f (x); in general the fact that R maps
S into itself is non trivial and must be checked rigorously.
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The renormalization group approach - II

By the correspondence between uL and FL, we have the “semigroup property”

RLn,F︸ ︷︷ ︸
solve on [1,Ln]

= RL,FLn−1︸ ︷︷ ︸
solve on [Ln−1,Ln]

◦ · · · ◦ RL,FL︸ ︷︷ ︸
solve on [L,L2]

◦ RL,F︸︷︷︸
solve on [1,L]

.

Each R on the r.h.s. involves solving the problem on a finite interval [1, L] and the
long time problem is reduced to an iteration of these: setting t = L2n, one has

u(t, x) = t−α/2(RLn,F f )(t−1/2 x).

The RG analysis then consists in showing that there exists α such that

FLn → F ∗, RLn,F f → f ∗

where f ∗ is a fixed point of the RG, corresponding to a scale-invariant solution
of ∂tu = ∂2xu + F ∗(u). The asymptotics of the original PDE are then given by

u(t, t1/2x) ∼ t−α/2f ∗(x).
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Irrelevant and marginal nonlinearities

For F = 0, the PDE is just ∂tu = ∂2xu, which has a scale-invariant family of
solutions given the heat kernel for α = 1; for suitable F 6= 0 and integrable f , we
may expect the rescaled solution u to be attracted by this line of fixed points.

Therefore we set α = 1, FL(a, b, c) = L3F (L−1a, L−2b, L−3c); we will assume
F : C3 → C to be analytic in a neighbourhood of the origin.

Observe that for a monomial F (a, b, c) = an1bn2cn3 we have

FL = L−dFF for dF = n1 + 2n2 + 3n3 − 3;

for general F we define its degree dF to be the smallest number computed for the
monomials in the Taylor series of F at 0 with non-zero coefficient.

We say that F is irrelevant if dF > 0, marginal if dF = 0, relevant if dF < 0.

In this talk we will only deal with the irrelevant and marginal cases; observe
that F is irrelevant iff FLn → F ∗ ≡ 0.
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Gaussian fixed points and suitable Banach spaces

We start by discussing the RG map R0 corresponding to F ≡ 0. We have

R0f := R0,Lf = L
(
e(L

2−1)∂2
x f
)

(L ·) = e(1−L
−2)∂2

x fL for fL(x) = Lf (Lx);

in Fourier space

R̂0f (k) = e−k
2(1−L−2) f̂ (L−1k).

R0 has a line of fixed points: {A f0}A∈R for f ∗0 given by f̂ ∗0 (k) = e−k
2

.

Let us now define S to be the completion of C∞c under

‖f ‖ := sup
k

{
(1 + k4)(|f̂ (k)|+ |f̂ ′(k)|)

}
.

Reasons for this choice:

1) R0 has nice contractivity properties w.r.t. ‖ · ‖;
2) ‖f ‖ controls norms like ‖f ‖L∞ , ‖f ‖L1 and related quantities for ∂x f , ∂2x f ;

3) the space S is an algebra; moreover it provides a good control on quantities
like ∂n1x f 1∂n2x f 2 for ni ∈ {0, 1, 2} and any f i ∈ S.
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1): we can decompose f ∈ S as f = A0f
∗
0 + g with ĝ(0) = 0 (i.e. A0 = f̂ (0)).

Then using the property ĝ(L−1k) ≤ ‖ĝ ′‖∞L−1k , a simple computations shows
that for all L big enough (say L ≥ 2) it holds

‖R0g‖ ≤ CL−1‖g‖;

the multiplier e−k
2(1−L−2) controls the weight 1 + k4, while |(ĝ(L−1·))′| ≤ L−1‖g‖.

2): if ‖f ‖ <∞, then f̂ decays like k−4 at infinity, so f̂ ∈ L1 ∩ L2 and
f ∈ L2 ∩ L∞; similarly f̂ ′ ∈ L2 gives x f (·) ∈ L2 and then

‖f ‖L1 =

∫
|f (x)|dx ≤

(∫
(1 + |x |2)−1dx

)1/2

(‖f ‖L2 + ‖x f ‖L2) . ‖f ‖.

3): if f i ∈ S, then ∂̂nix f i decay like (1 + k2)−1 for any ni ∈ {0, 1, 2}, so that

ĝ i := ∂̂nix f i ∈ L1; then using 1 + k2 . 1 + (k − l)2 + l2 we get

(1 + k2)|ĝ1g2(k)| .
∫

(1 + (k − l)2)ĝ1(k − l)ĝ2(l)dl +

∫
ĝ1(k − l)(1 + l2)ĝ2(l)dl

. ‖(1 + k2)ĝ1‖∞‖ĝ2‖L1 + ‖(1 + k2)ĝ2‖∞‖ĝ1‖L1 . ‖f 1‖‖f 2‖.

A similar computation shows that S is an algebra.
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Irrelevant case: main result

Theorem (Irrelevant case)

Let F : C3 → C be analytic in a neighbourhood of 0 with dF > 0 and fix δ > 0.
Then there exists ε > 0 such that if ‖f ‖ < ε, the equation

∂tu = ∂2xu + F (u, ∂xu, ∂
2
xu), u(1, x) = f (x)

has a unique solution which satisfies, for some A = A(f ,F ) ∈ R,

lim
t→∞

t
1
2−δ‖t 1

2 u(t, t
1
2 ·)− Af ∗0 (·)‖ = 0. (1)

The constant A is not computed explicitly but rather the limit of a sequence
{An}n constructed iteratively.

This is where the RG approach shows its effectiveness compared to a more
perturbative approach: the initial guess A0 =

∫
f (x)dx is wrong and trying

to expand u around A0f
∗
0 can’t give any results.

Contrary to more classical PDE approaches, we need to restrict to small
initial data, ‖f ‖ < ε; however no assumption whatsoever on the sign of F .
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Remarks on Theorem 1

a) Estimate (1) translates in Fourier space as

|û(k , t)− Ae−tk
2

| ≤ C tδ−
1
2 (1 + t2k4)−1 (2)

for some constant C > 0, uniformly over (k , t); taking smoother initial data
improves the decay on the r.h.s. accordingly.

b) The proof also works in RN and for ∆u replaced by a fractional Laplacian:

∂tu = −(−∆)β/2 + F (u)

where F is analytic in u and its spatial derivatives up to order β; in this case

u(t, x) ∼ At−
N
β f ∗(t−

1
β x) for f ∗ given by f̂ ∗(k) = e−|k|

β

.

The RG map is given by RLf = LNu(Lβt, Lx); for monomials

F = Πi,j(∂
aj
j u)nij

the degree dF is defined as

dF =
∑
i,j

(N + aj)nij − (N + β);

similarly for general dF ; the result then applies in the regime dF > 0.
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Proof of Theorem 1

We start by discussing local existence in S; write the PDE in mild form

ut = e(t−1)∂
2
x f +

∫ t−1

0

e(t−1−s)∂
2
x F̄ (us)ds =: (uf )t + N(u)t (3)

where we used the shortcut notation F̄ (u) = F (u, ∂xu, ∂
2
xu).

We solve (3) by a contraction argument: define

‖u‖L := sup
t∈[1,L2]

‖ut‖, Bf :=
{
u
∣∣ ‖u − uf ‖L ≤ ‖f ‖

}
;

then T (u) = uf + N(u) is a contraction on Bf for ‖f ‖ ≤ ε = ε(F , L) small.

To see this, expand F in its Taylor series around 0, so that

̂̄F (u) =
∑
n∈N3

anû
∗n1 ∗ ∂̂xu

∗n2 ∗ ∂̂2xu
∗n3

;

we can now use the properties of ‖ · ‖ to estimate the action of the heat
semigroup on each monomial term as follows:
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∫ t−1

0

e−(t−s−1)k
2
∣∣∣û ∗n1 ∗ ∂̂xu∗n2 ∗ ∂̂2xu∗n3 ∣∣∣(k)ds

. (C‖u‖)n1+n2+n3(1 + |k |2)−1
∫ t−1

0

e−sk
2

ds

≤ (C‖u‖L)n1+n2+n3(1 + |k |4)−1.

A similar estimate holds for the monomial terms in ̂̄F (u)
′

as well; since F is
analytic, |an| ≤ (CF )n1+n2+n3 . Summing over n we get a convergence series for
‖u‖L small enough and moreover (dF > 0 implies n1 + n2 + n3 ≥ 2)

‖N(u)‖L ≤ CL,F‖u‖2L.

Finally, since ‖uf ‖L . ‖f ‖ it holds ‖u‖L . ‖f ‖ and so ‖T (u)‖ . ‖u‖L ≤ ‖f ‖ once
we choose ‖f ‖ ≤ ε(F , L) small enough. Thus T maps Bf into itself.

A similar argument gives the estimate

‖N(u1)− N(u2)‖L ≤ CFL
2(‖u1‖L + ‖u2‖L)‖u1 − u2‖L

showing that T is a contraction on Bf (for ‖f ‖ ≤ ε(F , L)). The unique solution u
satisfies u(L2, ·) = uf (L2, ·) + ν(·) with ‖ν‖ ≤ CL,F‖f ‖2.
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To study the asymptotic behaviour of the solution, we now set up an iterative
argument based on the decomposition f = A0f

∗
0 + g0 with A0 = f̂ (0), ĝ(0) = 0.

The reason for this decomposition comes: i) from R0 being contractive on g ; ii)
the fact that ‖g0‖ = ‖f − f̂ (0)f ∗0 ‖ ≤ C‖f ‖.
We have the relation Rf = Lu(L2, L ·) = R0f + Lν(L ·) and we can now
decompose it again as Rf = A1f

∗
0 + g1 for the choice

A1 := A0 + ν̂(0), g1 := R0g0 + Lν(L ·)− ν̂(0)f ∗0 .

Since ‖ν‖ ≤ CL,F‖f ‖2, we have

|A1 − A0| = |ν̂(0)| ≤ ‖ν‖ ≤ CL,F‖f ‖2

‖Lν(L ·)− ν̂(0)f ∗0 ‖ ≤ 2‖ν‖ ≤ CL,F‖f ‖2;

combined with ‖R0g0‖ ≤ CL−1‖g0‖ we deduce that

‖g1‖ ≤ CL−1‖g0‖+ CL,F‖f ‖2 ≤ (CL−1 + CL,F‖f ‖)‖f ‖ ≤ L−(1−δ)‖f ‖

where the last inequality holds for ‖f ‖ ≤ ε(L,F ) and L = L(δ) large enough, e.g.

2C ≤ Lδ, 2CL,F ε ≤ L−(1−δ).
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It now remains to iterate this procedure: set fn := RLn,F f = Anf
∗
0 + gn and define

the next iterative decomposition by

An+1 = An + ν̂n(0), gn+1 = R0gn + Lνn(L ·)− ν̂n(0)f ∗0 .

Assume inductively that

‖fn‖ ≤ C‖f ‖, ‖gn‖ ≤ CL−(1−δ)n‖f ‖;

we can then go through the same analysis as before, only observing that replacing
F by FLn will now produce a factor L−ndF in front of all constants depending on F :

‖νn‖ ≤ CF ,LL
−ndF ‖f ‖2

|An+1 − An| ≤ CL,FL
−ndF ‖f ‖2

‖gn+1‖ ≤ CL−1‖gn‖+ CL,FL
−ndF ‖f ‖2 ≤ CL−(1−δ)(n+1)‖f ‖.

The inductive assumption holds and we deduce that {An} behaves like a
geometric series, An → A with |A− A0| = |A− f̂ (0)| ≤ CL,F‖f ‖2 and that

‖Lnu(L2n, L ·)− Af ∗0 ‖ . |A− An|+ ‖gn‖ . L−(1−δ)n‖f ‖.

But this is exactly our claim for t = L2n; the same technique allows to extend the
bound to t ∈ [L2n, L2n+2] giving the conclusion. �
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Marginal cases

There are two possible marginal cases: cubic nonlinearity

∂tu = ∂2xu − u3 + G (u, ∂xu, ∂
2
xu)

or Burgers nonlinearity

∂tu = ∂2xu + 2u∂xu + H(u, ∂xu, ∂
2
xu)

where H and G are irrelevant nonlinearities. These two cases behave quite
differently; we start analysing the first one.

The sign −u3 is needed for long time existence, otherwise solutions might blow up
in finite time. For technical convenience, we will assume that the Taylor expansion
of G starts at degree 4 or higher; otherwise there is an initial “crossover time”
during which G dominates u3.

We can then rescale u = λ1/2ũ in such a way that f̂ (0) = 1 and treat

∂tu = ∂2xu − λu3 + Gλ(u, ∂xu, ∂
2
xu)

where Gλ(z) = λ−1/2G (λ1/2z) is of order λ3/2 for λ small. We can write
f = f ∗0 + g with ĝ(0) = 0.
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Marginal case I: main result

Theorem (Marginal case, cubic nonlinearity)

Let G : C3 → C be analytic in a neighbourhood of 0 with dG > 0. Then for any
δ > 0 there exist λ0, ε > 0 such that for any λ ≤ λ0, ‖g‖ ≤ ε, the solution to

∂tu = ∂2xu − λu3 + Gλ(u, ∂xu, ∂
2
xu)

with initial data f ∗0 + g, with ĝ(0) = 0, satisfies

lim
t→∞

(log t)1−δ
∥∥∥∥t 1

2 u(t, t
1
2 ·)−

(
λ

2
√

3π
log t

)− 1
2

f ∗0 (·)
∥∥∥∥ = 0. (4)

The marginal nonlinearity yields a logarithmic correction and a worsened
rate of convergence.
The rescaled solution t

1
2 u(t, t

1
2 ·) converges to 0; although there is a

nonlinearity, at leading order it behaves like a Gaussian f ∗0 .
Contrary to Theorem 1, the constant in (4) is explicit. This is because here
the iterative sequence {An} will actually converge to 0; the term (2

√
3π)−1

comes from a higher order Picard iteration around f ∗0 .
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Idea of proof of Theorem 2

Let us introduce the shortcut notations Pt = et∂
2
x , Ḡ (u) = G (u, ∂xu, ∂

2
xu) and

N3(u)t :=

∫ t

1

Pt−su
3
s ds, NG (u)t :=

∫ t

1

Pt−s Ḡ (us)ds.

Since u3 is marginal, we need to handle its effect on u explicitly, which will lead to
the logarithmic correction. For future use, we deal with initial data f = Af ∗0 + g
with |A| ≤ 1 (although A0 = 1).

The mild formulation reads

uA(t) = Pt−1f + N(uA)t = APt−1f
∗
0 + Pt−1g − λN3(uA) + NG (uA);

existence and uniqueness for uA can established as before; also let u∗A solve

u∗A(t) = APt−1f
∗
0 − λN3(u∗A)(t)

One can show that, uniformly over |A| ≤ 1, ‖g‖ ≤ ε and λ ≤ λ0 small, it holds

‖N3(uA)− N3(u∗A)‖L ≤ CL(A2‖g‖+ ‖g‖3) + CL,Gλ
3/2

where the factor λ3/2 comes from the rescaling Gλ and our assumptions on G .
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Define ν by the relation uA(L2, ·) = PL2−1f + ν. We can expand uA further as
follows: set

ν∗ = N3(P·−1f
∗
0 )L2 =

∫ L2

1

PL2−s(Ps−1f
∗
0 )3 ds

and define w by the relation

uA(L2, ·) = PL2−1f − λA3ν∗ + w .

After some calculations, one obtains (by an intermediate comparison with u∗A)

‖N3(u∗A)(L2)− A3ν∗‖ ≤ CL λA
5

‖w‖ ≤ CL,G λ (A2‖g‖+ ‖g‖3 + λ1/2 + λA5).

We have RLf = R0f + Lν(L ·), which we can decompose as RLf = A1f
∗
0 + g1 with

ĝ1(0) = 0. But then it holds

A1 = A0 + ν̂(0) = A0 − λβA3
0 + ŵ(0) for β := ν̂∗(0)

and |A1 − A0 + λβA3
0| ≤ |ŵ(0)| ≤ ‖w‖ to which the previous estimate applies.

Finally, as in Theorem 1, ‖g1‖ ≤ CL−1‖g0‖+ CL,Gλ.
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We are now ready to run the iteration argument for the sequence (An, gn) related
to the decomposition RLn f = Anf

∗
0 + gn with ĝn(0) = 0.

G will produce a term L−ndG , improving some of the previous bounds, but the
terms associated to the nonlinearity u3 stay untouched. Contrary to Theorem 1,
the sequence {An} will converge to 0 and we need to keep track of the higher
order A5.

Repeating the previous calculations, using the decomposition νn = −λA3
nν
∗ + wn

and estimating wn, one arrives at the estimates:

|An+1 − An + λβA3
n| ≤ CL,G λ (A2

n‖gn‖+ ‖gn‖3 + λ1/2L−ndG + λA5
n) (5)

‖gn+1‖ ≤ CL−1‖gn‖+ CL,Gλ(A3
n + ‖gn‖3 + λ1/2L−ndG + λA5

n) (6)

together with the information that An is decreasing to 0.

Thus in the above, the leading terms are given respectively by A3
n in (6) and

A2
n‖gn‖+ A5

n in (5); An must satisfy

An+1 − An + λβA3
n = O(A5

n)

which implies it being at first order of the form An ∼ (2λβn)−1/2.
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Inserting again this information in (5),(6) gives the asymptotic behaviour

An = (2λβn)−1/2 +O(n−1), ‖gn‖ ≤ CL,Gn
−3/2.

By RLn f = Anf
∗
0 + gn and the above we deduce that, for any δ > 0,

n1−δ‖Lnu(L2n, L ·)− (2λβn)−1/2f ∗0 ‖ . n−δ → 0;

the constant β can be computed explicitly as it was given by

β =
1

4π2

∫
R

∫ L2

1

PL2−s(Ps−1f
∗
0 )3(x)dsdx =

log L

2
√

3π
.

Taking t = L2n, so that 2 log Ln = log t, the above estimate becomes

(log t)1−δ
∥∥∥∥t1/2 u(t, t1/2 ·)−

( log t

2
√

3π

)−1/2
f ∗0

∥∥∥∥ . (log t)−δ → 0

which shows the claim for t = L2n. Extending it on intervals [L2n, L2n+2] can be
done by standard arguments. �
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Marginal case II: Burgers nonlinearity

Consider now the marginal case given by

∂tu = ∂2xu + ∂x(u2) + H(u, ∂xu, ∂
2
xu) (7)

with irrelevant H, namely dH > 0.

To study (7), we start treating H ≡ 0, i.e. viscous Burgers equation. We can
reduce it to the heat equation by the Cole-Hopf transformation: set

ψ(t, x) = exp

(∫ x

−∞
u(t, y)dy

)
,

then ψ solves (HE): ∂tψ = ∂2xψ.

Observe that ψ(1, ·) is not integrable, instead obeys the boundary conditions

lim
x→−∞

ψ(1, x) = 1, lim
x→+∞

ψ(1, x) = exp
(∫

R
u(1, y)dy

)
;

thus we need to modify our previous analysis for R0 to find fixed points of the
form of “Gaussian fronts” satisfying boundary conditions.

The scale invariance for (HE) in the presence of b.c. is ψL(t, x) = ψ(L2t, Lx)
(α = 0), contrary to uL(t, x) = Lu(L2t, Lx) (α = 1) as before.
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Family of fixed points for RG

The asymptotic behaviour for (HE) in the presence of boundaries can be
computed explictly: suppose ψ(1,±∞) = ψ±, then

ψ(t + 1, t1/2 x) =
(
et∂

2
xψ(1, ·)

)
(t1/2 x)

= (4π)−1/2
∫

e−
(x−y)2

4 ψ(1, t1/2y)dy

−−−→
t→∞

(4π)−1/2
∫

e−
(x−y)2

4 (ψ−1(−∞,0)(y) + ψ+1[0,+∞)(y))dy

Since ψ− = 1, setting A = ψ+ − 1 we can write the last expression as

ψA(x) = 1 + Ae(x), e(x) = (4π)−1/2
∫ x

−∞
e−y

2/4 dy .

The family {ψ∗A}A∈R gives a 1-parameter family of fixed points for the RG
associated to (HE) and scaling ψL(t, x) = ψ(L2t, Lx) (equiv. α = 0).

To see this, observe that ψ∗A = e∂
2
x hA for hA satisfying hA(Lx) = hA(x); then

Rα=0
L ψ∗A =

(
eL

2∂2
x hA
)
(L ·) = e∂

2
x
(
hA(L ·)

)
= ψ∗A.
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Role of different scalings

Going back to Burgers via the inverse transform u = (logψ)′, we find a
1-parameter family of fixed points for RG (for α = 1) given by

f ∗A (x) = ∂x(logψ∗A)(x) = ∂x(log(1 + Ae(x))) =
Ae′(x)

1 + Ae(x)
.

The parameter A can be recovered from f ∗A by means of the relation

log(1 + A) =

∫
R
f ∗A (x)dx .

The relation u = log(ψ)′ explains the correspondence of the different scalings
α = 0 and α = 1 for Burgers and (HE) (equiv. {ψ∗A}A and {f ∗A }A):

Rα=1
L f = Lu(L2, L ·) = L

∂xψ(L2, L ·)
ψ(L2, L ·)

= ∂x(logψ(L2, L ·)) = ∂x(logRα=0
L ψ1).
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Marginal case II: main result

Theorem (Marginal case, Burgers nonlinearity)

Let H : C3 → C be analytic in a neighbourhood of 0 with dH > 0 and fix δ > 0.
Then there exists ε > 0 such that if ‖f ‖ < ε, the equation

∂tu = ∂2xu + ∂x(u2) + H(u, ∂xu, ∂
2
xu), u(1, x) = f (x)

has a unique solution which satisfies, for some A = A(f ,F ) ∈ R,

lim
t→∞

t
1
2−δ‖t 1

2 u(t, t
1
2 ·)− f ∗A (·)‖ = 0. (8)

Like in Theorem 1, the constant A cannot be explicitly computed but is given
as the limit of an iterative sequence {An}n.

Differently from Theorem 2, in this marginal case there are no logarithmic
corrections, same rate of as in Theorem 1.

The rescaled solution u is not attracted by the Gaussian family {Af ∗0 }A of
fixed points to (HE) but instead by {f ∗A }A fixed points for Burgers.
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Idea of proof

The proof is similar to that of Theorem 1, up to the change of fixed point.
Decompose f = f ∗A0

+ g0 for ĝ0(0) = 0, which determines A0 by the relation

log(1 + A0) =

∫
f (x)dx .

Observe that ‖f ‖L1 ≤ C‖f ‖ ≤ Cε, implying |A0| ≤ Cε. One can then show that

‖g0‖ ≤ C‖f ‖

using the explicit expression for f ∗A and the bound on |A0|.
Local existence is proved as before; to study RL, write the solution as

u(t, x) = u∗A0
(t, x) + ν(t, x), u∗A0

(t, x) := t−1/2 f ∗A0
(t−1/2 x)

so that ν satisfies (u∗A0
solution for H ≡ 0 with data f ∗A0

))

∂tν = ∂2xν + ∂x
[
(u∗A0

+ ν)2 − (u∗A0
)2
]

+ H̄(u), ν(1, x) = g0

with the shortcut notation H̄(u) = H(u, ∂xu, ∂
2
xu).
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We have
RLf (·) = Lu(L2, L ·) = f ∗A0

(·) + Lν(L2, L ·)

which we can decompose again as RLf = f ∗A1
+ g1 for ĝ1(0) = 0 and

log(1 + A1) =

∫
[f ∗A0

+ Lν(L2, Lx)]dx = log(1 + A0) +

∫
ν(L2, x)dx .

It follows from the PDE for ν that∣∣∣∣ ddt
∫
ν(t, x)dx

∣∣∣∣ ≤ ∫ |H̄(u)(x)|dx ≤ ‖H̄(u)‖;

the term H̄(u) can be controlled as in Theorem 1, yielding (for |Ai | small)

|A1 − A0| ≤ C

∣∣∣∣ ∫ ν(L2, x)dx

∣∣∣∣ ≤ CL,H‖f ‖2.

By the definition of g1, the above estimates and the contractivity of ‖ · ‖, we have

‖g1‖ ≤ CL−1‖g0‖+ CL,H‖f ‖2

To see this, use the PDE ν in mild form: Lν(L2, L ·) = R0g0 + h0 for a remainder
term h0 which is controlled by ‖u‖L ≤ CL,H‖f ‖2.
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Choosing suitable L = L(δ) and ε = ε(L,H), using ‖g0‖ ≤ C‖f ‖, we then have

‖g1‖ ≤ L−(1−δ)‖f ‖.

It only remains to run the iterative argument. Since HLn decays with L−ndH ,
adding it in front CL,H in the previous estimates yields

|An+1 − An| ≤ CL,H L−ndH‖f ‖2,
‖gn‖ ≤ CL−(1−δ)n‖f ‖.

The rest of the argument is exactly as in the proof of Theorem 1:

An → A geometrically;

RLn f = f ∗An
+ gn then gives an estimate for ‖RLn f − f ∗A ‖

this proves the statement for t = L2n, then extend to general t. �
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Final discussion: comparison with known results

We conclude with an heuristic discussion on the results presented and the related
literature for the heat equation with absorption:

∂tu = ∂2xu − up, p > 1. (9)

The PDE (9) is invariant under uL(t, x) = Lαu(L2t, Lx) for α = 2/(p − 1). To
understand what happens in the case p < 3, one first looks for self-similar

solutions u(t, x) = t−
1

p−1 f ∗(t
1
2 x), corresponding to the ODE

f ′′ +
1

2
xf ′ +

f

p − 1
− f p = 0.

The following results are known for this ODE:

1) for p ∈ (1, 3), there exists a positive solution f ∗1 with almost Gaussian decay;

2) for any p ∈ (1,∞), there exists a solution f ∗2 which decays at infinity like

|x |−
2

p−1 ; observe that for p > 3, f ∗2 is heavy-tailed and not integrable.
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Comparison with known results (continued)

The following are known regarding the basin of attraction of f ∗i :

1) For p ≥ 3, for any integrable, non-negative initial data f , the asymptotic
behaviour is governed by f ∗0 , as in Theorems 1 and 2. This is a global result;
the one presented here only holds for small data f and integer p, but does not
require non-negativity and holds for general F (also +up in place of −up).

2) For p ∈ (1, 3), non-negative u with suitable Gaussian decay, the asymptotic
behaviour is governed by the non-trivial fixed point f ∗1 .

3) If one starts with non-negative u decaying like |x |−α, α ∈ (0, 1), then for
p ≥ 3 the relevant “Gaussian” fixed point becomes f ∗α for

f̂ ∗α (k) = |k |α−1e−k
2

which is a fixed point of R0 (RG for (HE)) with the right decay at infinity.

In the last case, the nonlinearity up is irrelevant (resp. marginal, relevant) if
p > 1 + 2/α (resp. =, <). The dynamics is then governed respectively by f ∗α , f ∗2
or the constant in space solution to ∂tu = −up, which can be seen as a
(degenerate) new fixed point.
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Analogy with the theory of critical phenomena

To develop the analogy, consider an Ising model or a φ4 theory on the
N-dimensional lattice, at the critical point.

N > 4 corresponds to the irrelevant case p > 3: the behaviour at the critical
point is governed by the Gaussian fixed point, which may be seen as a
triviality result.

N = 4 becomes marginal and the Gaussian behaviour is modified by
logarithmic corrections, as in Theorem 2. In φ4 like in p = 3 here this
happens because the marginal term becomes irrelevant when higher order
corrections are included (in Theorem 2 we had An → 0). This higher order
irrelevance however depends on the sign of the perturbation −u3.

Other marginal nonlinearities do not have the same behaviour: think of
Burgers and Theorem 2, or the nontrivial fixed point f ∗2 discussed above for
p = 1 + 2/α.

For N < 4 one expects the critical behaviour to be governed by a non-trivial
fixed point, whose existence is much harder to establish than here.
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