Bounds on the RG operators R, """
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Statement of the results
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First we recall some definitions involved in the bounds described before.

The indexes ¢, (1, ..., ¢, varies in the set TL={2L,2R. 4L, 4R,6SL,6R,8,10,---}.
The absolute value |/| of the index / is a integer |2L|=|2R| =2, [AL|=|4R|=4, ---.
If /€ TL, we denote by By the following Banach space:

when ¢ =21, 4L then B;=1R (with the absolute value norm),

when ¢ 2L.4L then By is a Banach subspace of
By C [Liy(R R)|™

where ny € IN is a suitable integer depending on NV € N (the number of fermionic fields) and /.
The weight function w: R4l — R is defined as

-3

where St(x) is the Steiner diameter of the set x = (z1,..., 7)) € R 0<o<1and C>0.




When (¢ {20, 2R, 4L, 4R, 6SL}, the elements Hy € B, are indexed by objects of the form
A= ((pd, ad), ..., (”@P aﬁj)), where € {0,....d} ae{l,..., N}. The function H; is
associated with the / homogeneous polynomial in W

W(H) =3 / H(xa B)0,0 0, (21)- -0, Wya (1))l
A

The norm of Hy is given by

HHEHw:SzpHHﬁ('aA)x1=0HL,}U(Rd|£|,R):Szp/ [He(zn, Aoy =olw(ra)e,=0d(za\71).

Re(El—1)

When ¢/ =2L.4L, and thus By=1IR;

TOEDS Qa,b/qfa(x)\pb(x), vy=x2 3 QC,hﬂa,b/\pa(x)\yb(x)\yc(x)\ph(x).

a,b a,b,c,h

In the case / =2R,4R,6SL we have that B, C L. (R*I R)

U (Hyp) = / Haop(wn, D)0, Uad, Uydzn, U(Hip)— / Hap(wn, D)9V, - -dua.

where 1, 11" # 0. We denote by B, =@, By

|€71=1¢]



In this seminar we want to prove some analytical estimates on the RG maps
Rl--tn. B
0 : glx---XBgnHBg.
More precisely, for any £ € TM and Hy € By, we have that

v~P272||Hyp||y for £=2R
IRE(H)lw <{ 7P Hapllw for £=4R (1)
v PRI Y|l forl>6

while

R3L(v)=~"Pw,  Riz(\)=~""\ (2)

In all the other cases, namely when (n, (¢1,---.¢,)) # (1,¢) and for any h; € By,, we have

IRZ (b, -+, )l < v~ P ppey (B -+, h) (3)

with

> |0 +2(n—1)
0 otherwise

cr 'L, C
pw(hl,---,hn):{ v 1l



We introduce the dilation operator D: By — By defined as

D(Hy ) (x) =~ PPy dle=D g, (yz)

where

Dk_k[w]—d_k(%—%>—d

p is the number of derivatives in the kernel 1y ,. In the particular case ¢ =2L,4L,65SL we get

d
vy T, AN, X(a) e Doyl ().
With this definition of the operator D we define, for any ¢ € TL,

Rj(H;) = D(Hy)



In the case where (n,/¢1,...,4,)+# (1,¢) the definition of Rﬁl’ % is more complex.

More precisely we have the following expressions

ngl,...,n 1f‘€’>8

Rel,...,e _D

T)f1 5% if ¢ € {20, 2R, 4L, AR}

]
Rl _ SeloAt i (b, ... 0,) = (2,41, 4L)
6SL = :
0 otherwise
Rl ot SEv ot i (n, by, 0,) # (1,6SL)(2,4L, 4L)
0 otherwise '
where S| /| ol s the integrating-out operator and 7, | lis the trimming operator whose precise

expressions will be recalled later.



Proof of inequalities (1) and ()

1234567891011 12 13 141516 17 18

We recall that in the case ¢ #2L.,4L, (n,¢1,...,0,)=(1,£) we have that the action of the RG
map is given simply given by the dilation . More precisely when ¢/ =2R we have

R3R(Har) = {7y~ ">y Hap,o(yx), v~ 72~ 'y Haop,1(vx), vy~ P> 72y Hag 2(72)},
by the particular structure of the space By, Hor o= Har 1 =0, and so
IRSE(H2r) |l w= """ H2rllw(./v) < 77> Harllw-
For R1% the reasoning is similar and use the fact that
RiR(Hyr) ={y Py Hyg o(yx), v~ P+ P> Hyp () }.

With this we have proved inequality (1). For ¢ =2L, 4L we have the explicit expression of the
map R} indeed

d
R3t(v)=~7""v=7"Pw, RiE(\) =12 A=7"P\
This proves inequality (2).

Ri(Hy) = {v Py Hy o(yx), v~ P2~ Hy 1 (v2), v~ P2~ 2y Hop o(y2), ... }



ldea of proof of inequality (*)
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In order to proof inequality (3) we have to give some estimates on the integration out operators

01, ... 0
Sie|
theorem.

Theorem 1. For any

HS|£| ’E"(hla"'7hn)Hw<,0|£|(hla"'7hn)
where
n—1 n .
pret(h, - h) =4 G 1z if X1l >
0 otherwise
and

|5 () |l /) < Cry | Ha ol

HT22R1(H)H’LU(-/7) < Cry|[Hz2 1w

T35 (H) (. /) < Cry? || Ha,0]|w
N7 (H ) |l /y) < Crll Hz,0]lw

<
T3 (HD) (. ) <

e

™ and on the trimming operators Tyl. More precisely we want to prove the following

[l +2(n—1)



Proof of inequality (/)
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In this part we want to prove inequality (4) on
1.l

. First we recall the definition of Sfjl""’gn. Consider hy, ..., h, € By, X -+ X By, and let
H)y| € Bjy| be defined as

FIW — nglr o ’En(hl, cee hn)

then we have B = ((p1,a1), ..., (p1e), aje)))

~ 1
H|£|(xB’IB):W Z Z (_]‘)#K((Bi,Ai))izl,...,n(ajIB) (6)
]B

]:Bl) IB Al,...,An
=B B;CA;|A;|=|4]

where

.....



where

and



Lemma 2. The number of terms in the sum (6) are at most

22?:1|£i| X (Nd + N)ZZL:1|£Z|

Proof. If we fix B and the length of |/;| of A; (i.e. we fix the operator S%’ ) each term in

the sum (6) is in one-to-one correspondence with a sequence I having length [(1|+ - + |/,,]
extending [B.

Indeed, if we choose a sequence L. D B extending B there is only one way of partitioning IL in
the subsequence A; since the length |/;| of A; is fixed from the beginning. Once chosen I (and
so AA;) the only possibility of partitioning B with the subsequence B;, having B C L. fixed, is to
take B; = A,; N B.

The number of sequences I extending B and having length /1] + ... +[(,] is

Z |4 :

— Nd+N)Z?:1|fi|—|f| < 92i=llil (Nd_}_N)Z?:lwil' O
€]



Lemma 3. We have that

C(rp)| < (Can)® > [ M@-a)
T anchored tree for (Bi,...,B,) (z,x')eT
where

|z

,YO'

M(:E) — C’X16_OX2

and T is an anchored three for B with respect to the partition (B1,...,B,,) if T is a tree with
vertexes B such that is a connected tree of the quotient B /(IBy,...,B,).

Proof. We have that
Ce(zg) = (®(xp,|B1)-- - P(xp, |Bn))e;

where (-1X-9X -+ X -). is the reduced expectation. If we apply the Gawedzki-Kupiainen-
Lesniewski (GKL) theorem we obtain the statement of the lemma with

cGH_max( C= \g(k)@iﬁd)-




Lemma 4. We have that

<JJwea)x I] wo.a).

(x,x")eT
Proof. Let 7 be an anchored tree for B with partition (By,...,1B,). If 71,...,7, are trees
connecting za,,...,xa, . respectively, the tree 7 U7 U -+ U7, connects the point {zp, x5}

and so . This implies that

St(zp) <St({zp,z5}) Z St(za,) Z lx — 2’|

(x,x")eT

Since 0 <o <1, for any p1,..., pr € R we have

h o p
(Z pz‘) < Z Py
i—1 i—1

Using the two previous inequalities and the definition of w(xz¢) as

w-on(o(2))

we get the thesis. O]




Lemma 5. For any ((B;, A;))i=1,.. . we have that
1K (B2 o, ollw SN, B0 (Can)® [ M5 H 17l

where s=3>""_ |(;| and N(s, .. B,) is the number of anchored trees of B with respect to the
partition (B1,...,1B,).

Proof. First we note that, by Lemma 3 and Lemma 4, we get

| K (B, a)||w = /’K((Bi,Ai))(fCB)’w(xB)de

Z/ H M(x_x')H |hi(zn,, ) |w(re)drgys

w({z, 2" })M(x — ')

VAN

/N
N
\

><H w (za)|hi(za,, As)|dzpus. (7)

In order to get the thesis we use an “amputating tree leaves’ argument.



More precisely, given an anchored tree 7 we can find a leaf: i.e. we can considera k€ {1,...,n}
and a set x5, Cxp, such that 7y is connected to the remaining vertexes of {z, x5} by only

one edge, say (z,2') where z € zp, and zg =za, \ 2.

We then integrate the integral (7) first with respect to xp, \ 2 (considering z fixed) obtaining
a factor of the form

rVwHw=1/Whm¢AkMsz:dumxAk»:@dek

and then we integrate with respect to z obtaining a factor of the form
M]l= [ MEu(E)d

Repeating the argument n — 1 times we get the thesis. ]



Lemma 6. We have that

Ng, . g, <nlazi=lbl

Proof. The proof is a consequence of the (standard) estimate on anchored trees with respect
to the partition (B1,...,B,). Indeed we have

No. 5. <nldSinlBl — (Tl =16 g Sialed -

Proof of inequality (4). By equation (6) and Lemma 2 we have

P (N N

n! (BiA2))

-

1, ...l
151 o <
By Lemma 5 and Lemma 6 we have

| <nl(4y/Cm) >4

1K (B:.80)) M~ T 7l
1=1

Inequality (4) follows by taking C., = || M ||, and Co=8(Nd+ N)v/Cen. O



Proof of inequality (")
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In order to prove inequality (5) we need to recall the precise definition of the operators Ty'.
First we consider H || ,, a kernel in Bj; (i.e. a kernel corresponding to the monomial where the

fields W, (for some a € {1,..., N}) appear exactly |¢| — p times and the derived fields 0, ¥,
(for some a€{1,...,N} and p*€{1,...,d}) appear exactly p times).

This means that the field W(H ;| ,,) corresponding to | , is given by an expression of the form

\IJ(HW,p): Z H|g|,p($1,...,x|g|,A)8M1\Dal(£€1)--'8M|e|\11a£|($|g|)d$.
A=((p%a"), X |pil=p

The kernels H || ,, are not uniquely determined since by the commutation properties of the fields
W, and the symmetries of the model. We do not enter into the details of this choice but we
suppose to fix a representative of the equivalence class before.



We want to decompose H ||, into the local and remaining part when |/| =2, 4.

We start with Hs 1 for which we have

GRS SN DI L ASTC(CHOR) A AENL ACALEES
Using Lagrange theorem we can rewrite

\Ifb(ilfg) = \Ifb(Cﬂl) —+ /01(6t\pb($1 —+ t(fEl — xg)))dt

From which we get

U(H 1) = / Ho 1), )0 Wa (1) Wy (1) A1 s

+Z Z /HQ,Q(xa ((aa M)? (ba V)))aulpa(xl)ay\pb(ﬁz)daildxg,

where I o is related to Ha ¢ by the formula, for any f € C§°,

/H2 2(x, ((a, 1), (b,v)))z1=0f (x2) dxz—/H2 1 ((fl,M)ab))xlzoxg/olf(t@)dtdxz



Since Ha 1(x, ((a, 1), b)) is odd with respect the transformation x+— —x we have that the first
integral is 0.

From the second part we get the expression of T22,’21 namely

Ty (Ma,1) = (Haz2(, (@5 1) (0,1))) (0,09, 0,0)

where L, , € R are suitable constants.

Consider now the case of Ha o for which

\IJ(HQ’()) == Z /Hg’o(ZC, (CL, b))\Ifa(Zﬂl)\Ifb(ZEQ)daZldajg.

We can use the Lagrange theorem as before obtaining

U(Hao) = Y ( / \Ila(ajl)\lfb(ajl)d:cl) / Ho,0((0,22), (a,b))dws +

a,b

- Y [P o 0 )0, Baa)ddae



The first term in the previous sum defined the local part of the trimming operator namely

T3 (Hz,0) Z Cq b/Hg 0((0, z2), (a,b))dxs

a,b

for suitable constants C, , € R. We can apply again the Lagrange formula to what remains
obtaining the expression for 757 (H2.0).

For the other terms we use the equality

Uy (1) Wp(z2)Ve(x3)Uh(2g) = |
=W, (1) V(1) Ve(x1)Up(21) + \Ija(fﬂl)[) Oy [ Wy (25) We(28) Wy, ()] dt,

where z! =21 +t(x; — 1).

From this we can write

U(Hio) = Y /H40 (0, b, ¢, h))Wa(1)- - - U (4)das - - -

a,b,c,h

_ Z (/\Ija(xl)...\Ijh(xl)dml)/fl‘(él’o(fﬂ,(CL,b,C,h))xl0dfC2"'d$4‘|—

a,b,c,h

+ /H4 1 oy (B 1)) We(21) - - -0 W (a)day - - -dag
,--Juue{l



where analogously to the previous case, for any f € C§°, we have

/H4’1(33, (CL, b? RIS (h7 ,u)))xl:()f(ilﬁg, X3, $4)d$2d$3d$4 —

1
:/H4,0(x, (a,b,c,h))xlzo(até‘—xg‘—kxi‘)/ f(txe, tas, txy)dtdrodrsda,.
0

In this way we can define the operator 77" and 4R0 as

Ty (Ha,0) Z La,b,c,h/Hzl,o(iU, (a,b,¢,h))z,=odzodrsdry
a,b,c,h

and

T3 (Hao) = Ha 1.



We have the following theorem

Theorem 7. Consider an Hamiltonian H and ~ > 2, then there is a constant Cr such that

T35 (Ha, ) lw(./v) < Cry | Ha,1|w
IT52° (H2,0) (. /v) < CrlHz,0/lw
T35 (Ha,0)llw(-/7) < Crv2 I Hz,0llw
N3 (Ha,0) (. /v) < Crl Mol

|73 (Ha,0) (/7)< Crv | Hasollw

Proof. Inequalities HTQQZ’—JO(HQ,Q)Hw < CRHHQ,QHw and HTfl"JO(HLL’O)Hw < CRHHLL’OHIU) fO”OWS
directly from the fact that

1755 (Ha,0)lw =) _ Ca b/Hz 0((0,z2), (a,b))dx;

a,b

< Cr|[H2,0/|w

T332 (Ha0) | = Z La,b,c,h/7'l4,0(33, (a,b,c,h))z,—odxodrsdrs| < Cr||Ha,0]w-

a,b,c,h




Here we use the fact that w > 1.

Let us consider one of the other cases, for example || 57 (H2.1)llw(./4) < CrY | Hz,1]lw. In this
case T22j31(7'l2,1) = H 1 where Hy 1 and Ho 1 are related by the identity, for any f € CY,

/H22 (@, 1), (b)) —of (2) d@_/ml ((a,,u),b))xloxg/()lf(txg)dtdzvg.

We can choose f(x)= fu .o u(x2) =sign(Hsa (0, z2, (a, p), (b,v)))w(x2) where w.(x9) =
w(xo /) obtaining

ool = 3 /H2,2<:c,<<a,u>,<b,u>>>xlzofa,b,y,u<x2>dm2

/AN
iy
[\
[
“&
j@\
=
Eg_/
o
=)
X
S
=
)
[\
~—
2
o,
~
o,
)
[\

/AN
iy
[\
"r—t
N
=
=
Eg_/
o
=)
X
g
)
[\}
~—
=2
o,
)
[\V}



where we used the fact that w(tk) <w(k) if 0<t <1, and that there exists a constant C, >0
not depending on -y such that

sup
ve{l,...,d},zeR4 ’yw(a:

= sup
v,z Y

2 fule/1) _ o lexp( O3 = 1)5%) <Ch

A similar method can be used to prove the inequalities for ||T4R (H4,0)||w(./~) and
|55 (H2,0)|lw(. /)- In particular in the latter case we obtain a 72 since

IT20(Ha o)y <Y / Hao(2, (2, 5))oy —ol |5 P a2/ 7)ds
b.v

a/’ Y

and

v|2
sup @ \ wz/v) oo o —
ve{l,...,d},zreR? (:C)



Conclusion of the argument
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Summarizing the previous results we have that
ﬁl,...,fn é

where Cf >0 and g: IR — N are suitable functions. These two inequalities implies the result

for Rﬁl"”’gn. Indeed when ¢ ¢ {2L,2R,4L,4R} then Rﬁl’”"e”—Do{ st , and thus

the thesis follows from inequality (8) and the definition of the operator D. In all the other cases
Ry =DoT) o8 " and thus

IRE bl = DT oSl s,
7| e'mosfeﬂ"”’g”(hh---ahn)Hw(-/w
Clgvae+9(|£|)"5fgll""’E”(hl,---ahn)Hw
v ey, - ).

n Hw

NN

It is important to note that avop = D2 — 2 and ¢g(2) =2 and so aor + g(2) = Ds. We have also
asr=Ds—1 and g(4) =1 and thus ayr + g(4) = Dy.



Cn

An observation on the derivatives of Rﬁl’“"
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The argument presented before can be extended also to the (Frechet) derivatives of the (multi-

linear) operator Rgl’ ' Indeed, since the map Rgl’ 7 is multilinear and bounded (for the

result that we proved before), it also Frechet differentiable with the Frechet derivatives given by
the operator

n

Shims VR (b, hy)[6h] = Ry (b, hio1, 0h, higa,. . hy).

1=1

In this way we get that

IVR: (b, ha)lle(osy <y 1 pje(ha, - . hi) AL).



Conclusion K
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In conclusion we proved the following theorem.

Theorem 8. Suppose that v > 2 then we have the following inequalities

’y_DQ_QHHgRHw for {=2R
|RE(H ) lw < v~ P Hypllw for €=4R
P He Jorl =6

and
IRg:(hay - ho) lw < v~ Peppey(ha, -+, )

with

P CE R if S0 =0+ 2(n — 1
p£|(h1""7hn):{0’y H’Lzlco thw if ZJ&’/W‘F (n )

0 otherwise

Finally, similar estimates hold for VRgl’ cokn



