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Recall lefmltlon of rough paths s 3/24

Definition. For a E(/3 1/ 2) we def/ne the space CO‘([O T); V) of a-Hélder rough paths
(over a Banach space V) as those pa/rs X (X X) such Ath‘?t . S

Xlam: sup ml oo qua  ap e
: = s#tstEOT ‘t_ ' : i S#tStE[OT ’t—S‘ :

&0,

with the notation X ;:= XX ahd' such that

Xs,t T Xs,u 95 Xu,t o Xs,u 02 Xu,t-

Remark. In this seminar we shall be interested in random rough path
X(@):[0,T]=V, ~Xw):0,T|—-VeV.

In particular we shall consider the d—dlmen5|ona| standard Brownian motion B (here ¥V =R%)
enhanced with

¢ ' : ' ¢
IB&?::/BS,T@MBT, or IBS“at. /Bs,rodBr.
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e We want to prove that BItO (B IBItO) and BStrat (B IBStrat) are RP of regularlty o)
for any o€ (1/3, 1/2) o , .

To this'end;We__need to che_cjk':'ﬁ“'
o regularity condition ,(NKolrhogorov criterion for RP}. -

o algebraic condition (this follows directly from linearity and properties of the integral)



Kolmogorov criterion for rough path 5/24

Theorem (KC for RP) , e - s
Let q= - 2 and ﬁ - 1/q 5uppose that for any S, tE [0 T] w:th T > O there ex:sts a constant
C < oo such that . . . .

'E[qu,it]l/q#HXs,tHL'q<C’-\tr—'S\f@;;f' IZ'E[XS,]”"/— HXS tHLq<C\t—S\2ﬁ .

and that (X 'l'."X)““Statisﬁes the a/gebraté condition.

Then for any a €[0, 8 —1/q) there exists a modification of (X, X) and random variables
K. cldand K. e L“i’/2 such that for all s,t € [0,T] it holds that ' |

’Xs,t‘nga(w)‘t_S‘aa _ ‘]XS,t\glKa(w)]t—S]%‘.

In particular, if 3—1/q> 1/3; then for any e (1/3,8—1/q) it holds that (X ,X)eC“ a.s.




. ProofoflCsRP —ne . o

For simplicity fix 7= Land let
e

be the set of ihtegér muItipIe’s“:n_Of;'fo” in (0,1). Note that#Dn: 1/2—” = 2N

We shall consider s,te€ ) D, (th‘e'r'e:ma‘in'ihg‘timevs are filled.'»'in;'by continuity).
We define e

Kn:: Sup ’Xt,t+2_n‘7 I[{n:: Sup ’Xt,t—l—Q_n“

teD, e,

Exploiting the hypothesis, it holds that

EK]<E

Z |Xt,t+2—.n’q = 2}n0q(2—_n)6q:Cq(g—n)ﬁq—l’
tEB T .

and similarly ]E[IKZ/Q] G o T
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| »Proyo_f;ofKCfOF;RP (1)

Fix now s,t € U, Dy with s <t and take m € N such that
. 2_(m—|—1)<t_ s <2—m

Consider a partltlon of [s, t) of the form s=190<™1 < < ™ —t Where (s, TZ_|_1) 1
some n > m+1 and where at most two sub mtervals share the same n. It follows that

IXs,t‘ 0I<IlaXN ‘Xs T +1| Z |X7-z,7-z+1} < 2 Z Kn’
G % n>m—|—1

and thus |

|t i S|O‘ S Z 9—(m+1)\a = Z S Ka,
n>m+1( .)

with Ko:=23" -, (an) Fmally, K, ELq since, recallmg that' a € [0, 5 —1 /4,

| Kallzh? < P g oo

n=0 n>0

\

for



PffKCfRP liE——

Ana|ogous|y, we have

Nl.

V ’Xs t} = Z XTz,T%+1+Xs T1®XT1,TQ,+]_ Z |Xn,n+1| "‘ |Xs 7-z Tq,,Tz_'_l‘ XX
1=0 ' . =0 e
celNar e N—
\<\ - v’XTZ,Tz_Fl’_'_ maX ‘XS T Z TJ,TJ+1‘ X
i:'O. O<z N =0
- | N2
<2 'y ]Kn+ }: ",
n>m-+1 n>m—|—1
and thus

2
X 4 oK, = 2K, ;
oS 2 T 2 oy | et K
I

DL & LQ/2 and K, € Lq This concludes the proof.

with Ko: =23



~ 1t6 Brownian motion
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o Let B bea d'—d}i‘rirgféfr{iﬁs‘:iéoina.l»,sté?n"élar'd' Brbwni.an- :'ﬂm,dtionerjhanced 'fwith its iterated integrals

Bl [ BoodBeRiSRY

where the stochastic integration is Un'dfe‘rstood in the;_s,_enée of It6;

Provpo‘sition."_’"' Forany ae(1/3,1/2) and T >0, with probability one

~ B.— (B, B") e ([0, T]: RY).

Proof. (sketch) This follows from the KC for RP together with the Gaussian nature (we
need to control only the case q=2), the finiteness of moments and the scaling behaviour of

3

B(Bi—X-"'"2B;, and By i —A B}



[to BM is not.a geemetriceREw .. 10728
B is actually a RP but not a geometric RP

o This comes from Itd formu E

A(B'BY) = BUBI+ BB + (B, B, ij=1,....d,

yielding, for s <t,

§H(t_3)7é§Bs,t®Bs,_t- '

. - -
Sym(]B?,t) i §Bs,t ® Bs t —



Stratonovich Brownian motion 11/24

® Str_atho‘vilcf_\h BMlsdefmed éz'n,ji"‘:;ilogbu's,l'y":bult:'é:n-héhtved'vv_’vivth, its iff}tevraltedintegrals
understood in the :s'en'se of ,'Stra_’_c»c_.)hOVi.Cih‘. This gAives «
IBStrat Bgt?_l_ QH(t i S) '
e Similarly, B5at:= (B, B2t € ([0, T]; RY) for any a € (1/3,1/2);

o B>t is 3 geometric RP

Sym(BStrat) e Bs,t ®'Bs,t'
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MODEL: partncle of mass m and p05|t|on :L’(t) in R?, subject to a white noise B (distri-
butional derivative of a Browman motion B) in time and some Frlctlons al, g, @3>0 in
orthonormal directlons " : '

Described by the Newton's secy:ohd, 'Iawi'of_»dyna'mi'cs which reads
——_Mi+B,
wh‘e're'M is a symmetric 3 X 3 matrix having spectrum aj, o, (3.

The process x(t) is called physical Brownian motion.

In the limit of small mass, m — 0, a good approximation of x(t) is the (mathematical)
Brownian motion with a non-standard covariance (Fm=0=Mit=B=z=M"1B).



Brownian motion vivnv_a;.magneticﬂfie.ld o 13/24

What |four partlcle carrles a non zero electrlc charge q and it moves ina (constant) magnetic

fie/d H7 |
Newton's 'Sec’on'd law is a'gai‘n;'bfthe form
but now M"'i'si'”fﬁd'I.Onger'a symmetric matrix (due to Lorentz force F = gz x H).

Instead we shall simply assume M to be a 3 x 3 matrix such that

Real{a( )}C( , +00).
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o Wearestudying
o We intr’od'lece.fc‘he “momeni“i_jnj«ya‘riable p(t) :mﬂﬁ(t)andget
oMbk«

e Claim: we shall prove that X = X, indexed by the mass m, converges in a non-trivial way
- to BM at the level of RP as m — 0.

In particular, it converges to B := (B, I~B) with If%s,t: :]BEfg“at + (t — s) A where

A:%(MZ—EM*);H E::/ e owl ds

(A is anti-symmetric).



 Precise formulation s===e e

Theorem 1. Let M be a d X d square matr/x Whose eingenvalues have strictly positive real part.
Let B be a d d/menSIOna/ standard Brownlan mot/on m > O and cons:der the following SDEs

A% pa oo g ",—ifﬁdt__#_d’B,

with van/shlng /n/t/a/ cond/t/ons For any q > 1 and A= (§ %)/t holds that, as m — 0,
<MX,/MX®d(MX)> 4B ihee nd e

where B := (B, B), with IB #=Bs% 4 (¢t — s) A where

Azé(ME'—zM*), 2::/ e I Tl =ds
' : £): 7 o



. Outline ofitheprool === "~ 1o

In general, given (X™),, C C? for 1/3< a < 3 with uniform RP bounds

o sw|X"s<co,  swlXPlg<oo,

and pointwise,'c.ohiv’e“rgence

VeI XE R, B
this implies X € C7 and pa(X", X) — 0.
The proof is thus divided in two steps:

1. Pointwise convergence in L4
forn T ok %
(MXf,/ MXs ®d(MX€)s) — (Bo,t, Bo,¢);
| o | |

2. Uniform RP bounds in L4,



Pointwise convergence in L% . 17/24

In order to exploit Brownian scaling, we set m = &2 and we introduce the rescaled momentum

We have =~ -

 dYT=——eMYedt4e7MdB,  dXT—emlVede

Fdr a fixed &, we define the Brownian motion Bt :=¢eB_.-2, and consider thevSDEs

AV = _—MYdt+dB, dX=Vdt

When solved with identical initial condition, we have the pathwise equality

(iftaag_'lth) :(Z_Qta Xs_Qt)'



Pointwise convergence in L4 (ll) 18/24

3 W_e o_bser&/é-th"é't smceM IS p(r')__s"itive,-Y' i's"'er_g'odic an'dv‘the‘ ‘stati‘o‘h_a'ry;solution. has law

e To compute the cdvariance v'matrixE We ;‘writ'e the statié}na‘ry solution
. £ ey
Y%stat:/ B_M(,t_s)st

— 00

and observe that thus, e.g.,

9 E[Ybstat ® }_/()stéfc] :/ B_MSG_M*SdS.
iy 0

where we exploited the properties of the BM.
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Pointwise convergence in L% (1)

Since supye o,s)E[IY ] < 00, it follows that T

@ g i

in L? (and;thgs in any LY, q<oo) as € —0 unlformlylnt

From

C dYe=-—e?MYSdt+eldB,  dX°=e-lYedt.

it follows that MXF = B, — eV,

The first part of the convergence dire‘ctly‘;f(,’)llows, Ie.,
MX§ — By

as € — 0.



Pointwise convergence in L (IV) 20/24

o I\/Ioreover thanks to ergod|C|ty
/fY; dt—>t/f qu forq<oo
e In partlcular it holds that
/ MX:@d(MX9), = / MX:2dB,—« / MXE®dYe
O ' 0 . 0 e
| t - ' B
— /MXﬁ@dBS—MXf®(€Yf)+5/ d(MX®);®YS
0 « 0
t t
= /MXﬁ@dBS—MXf®(5Y;€)+5/ MY ® Y ds
0 o 0

i
= / B.odb. O+t/(My® o

/ Bs; ® dBs + tMY = Bgiat + t(Mz s %H)

where the convergence is in L? for g > 2.



Pointwise convergence in L4 (V) 21/24

But taking the~"7yml‘n€'ﬂrl<2partof the ,éBQv:e"'e’qu,ét'i‘onv yields |

But we alréédyf;’kn'ow'that - S
St this we tonchide that Sym(MX — %]I) =1,
Hence M3 — %H is anii—s’ymmetric, yielding
08 e e g
L MZ—§H;'§(MZ—ZM )

Summarizing, we proved that pointwise in ¢, we have convergence

o T, ;
(MXf,/ MX§®d(MX€)S>_>(Bo,t,IBo,t).
0]



_ UniformRPbounds e

To conclude we need to prove the followmg unn‘orm bounds for q < 00

q

o E[queu ] o IEH‘/MX%@d(MX“:) ]<oo.
£€(0, 1] . | 56(0 1] 20
Thanks to'the KC for RP it suff;ees to’vp‘rove that
sup B[XSJIS[E—s7?  sup E{ X2 0d(X9)] | Slt—slt.

e€(0,1] £€(0,1

For what concerns the first bound, we see that since X is Gaussian, it suffices to consider
the case ¢ = 2. We observe that this follows from

E[IX, /2 S [t - sl.
Indeed, provided the above bound holds true, we have

B[ XS 2 = ElleX, 2, .22 S 2le 2 = 25| = ¢ — s].



- Unlform RPbOUﬂdS (”) e i | 23 /24
» Thus we have to prove that

This follov\/_s from M X ; = By, — Y, , together With’:’fﬁe__e"sti‘mate

S,

E|

’ :'E["(G_M(t_'s),_'H)Yf] +/ Tr(e_vM%_,M“)du_fj It =%,

S

where the bound is uniform since Real{c(M)} C (0, 4+00).

e An analogous computation shows that at the level of iterated integrals it holds that

o

E|

t 2
[ Zwat ],s e

which in turns implies

2
]g\t—s\z.

rt
/ X2 ©d(X9)

This concludes the proof.



o Kolmogorov criterion for RP; . . = =
o It5 and Stratonovich Brownian motions;

e Brownian motion in a magnetic field and limit for vanishing mass m.



