1 Gaussian rough path

1.1 Introduction

ASSUMPTION 1.1. (Xi),cio.r] = (th"“’Xtd)te[o,T] is centred, continuous Gaussian pro-
cess with X' 1 X7 for all i # j.
The law of X is fully determined by its covariance function
R:[0,T)? — R4
(s,1) = E[X, ® X/].

Furthermore, we define the rectangular increments of covariance as

s, t . i J d
R st = (]E (XS’tXSI’tl>>i,j:1 :

Using Kolmogorov’s continuity and Gaussian hypercontractivity, we obtain the Hoélder regularity
of process X.

PROPOSITION 1.2. Assume there exists positive o and M such that for every0 < s <t < T,

‘R( 5, )‘ < M|t — s|Ve.
s,

Then, for every a < 1/(2p) there exists Ko € L4, for all ¢ < 0o, such that
Xt ()] < Kalw)lt — s/

Proof. Without loss of generality, we set d = 1, otherwise, we can consider componentwise.
Recall the Kolmogorov’s continuity criterion, namely, if there exists ¢ > 2,5 > 1/¢ s.t.

1Xodll, S 1t — 517,
then for all @ € [0, 8 — 1/q), there exists K, € L? such that
| Xsi| < Kot —s|%, as.
Hence, we only need to show

1
[Xsellg S 1t = s, vYg=2.

By Gaussian hypercontractivity, we have
1/2

s, 1 1
Xl $ 1l <= [R ()] < 32— sth, vz

S

which completes the proof. ]

EXAMPLE 1.3. A continuous and centered Gaussian process (Bt),sq with By = 0 is called a
fractional Brownian motion with Hurst parameter H € (0,1) if it has the covariance

1 (52H + 21— |t — 5]2H) .

E [BsBi] =T'(s,t) := 5

By simple computation, we see that

E((B%)") =E((BF)") +E((BF)") - 2E (B BY)
:% <2t2H + 2521 —o2H _ 921 4 |y s]QH) < |t —s?H.
Namely, é =2H, i.e. H= 2%. Then we have the following schema:



1. If H > %, we can apply Young’s theory.

2. If H= %, it is just Brownian motion, we can apply It formula.
3. If H< %, we cannot apply this anymore, since it is not a semimartingale.

Now we want to construct a reasonable lifted process X := (X,X) € Cg ([0, T],R?) with
suitable o, i.e.

1. Chen’s relation:

5Xs,u,t = Xs,u X Xu,t- (11)
2. )
Sym (Xs¢) = §X87t ® Xt (1.2)
3. ¥ .
[Xla == sup | S <00, |X|za = sup |7St|2a < . (1.3)
stefor) [t — s stelor) |t — sl

The construction of Gaussian rough path is similarly as the one for Brownian motion, namely,
we first define the integral

.. t . .
X0 = / X? X3
S

in L? sense, and then find a modification. In particular, the only possible choice for this setting
should be

Ji Xt dxd, if1<i<j<d,
X=X ifi=), (1.4)
XD+ XL, XD, if1<j<i<d
Note the followings:
1. By 1} we only need to consider ijt for 1 < i < j < d. For the sake of notation we
write (X, X) rather than (Xi,Xj) .

2. It is enough to consider the unit interval, since the interval [s, ¢] is handled by considering
(XS+T(t—S) . 0 S T S 1)

Similar as the case for Brownian motion, we first define the integral in L? sense, namely
1 ~ ~
/ Xo4 dX, := lim Z XoeXsy with € € [s,1], (1.5)
0 IPIL0
[s,t]eP

where the limit is understood in probability.
REMARK 1.4. Assume now X, X are semimartingale. By classic stochastic analysis:

1. £ = s ("left-point evaluation”) leads to the Ito integral.

2. & = t("right-point evaluation”) to the backward Ito.

3. £ = (s+1)/2 to the Stratonovich integral.



On the other hand, all these integrals only differ by a bracket term (X, X) which vanishes
if X, X are independent. While we do not assume a semimartingale structure here, we do
have the standing assumption of componentwise independence. This suggests a Riemann sum
approximation of in which we expect the precise point of evaluation to play no role.

For a partition P, we use the following notation:
/ Xo,dX, = > XosXer.
[s,t]leP

In order to show this forms a Cauchy sequence in L?, the rectangular increments of covariance
plays an important role. To this end, we define the following 2D —variation:

DEFINITION 1.5 (p-Variation). Let I, I’ C R be two intervals. For a function R : I x I'* —
RIX4 e define its o— variation as
0
")

For this variation, we have the following generalised Young’s maximal inequality, namely, if
IR|l,, ||R|  are finite with L + L > 1, then it holds
Ql

0,s ~ s, t ~
> w(gn)r( 2 ) =,

[s,t]€P,[s t'|€P!

e

Rl gsrx1r == sup > >

[s tleP [s',t']eP!

In our case, if we assume o < 2, then by the fact X L X, we have

sup (/XOSdX XOSdX>’
PCI
Pcr
indp. 0,s ~ s, t
S DRI ) L iy | E T L
pcr [s,t]eP
[s',t']eP’

With some efforts, one can show that

lim sup /ngrdf(r—/ XO,rer =0.
e—0 fp’fpl P P! L2
|PIVIP!|<e

we can use this to show the L? existence of

1
/ Xo,dX,.
0

And hence, we have the following theorem:

THEOREM 1.6 (Existence of Gaussian Rough Path). Let (X;:0 <t < 1) € R? be a Gaussian
with E(X) =0 and X; L X; for all i # j. Assume that there exists o € [1,2), M > 0 such that

IR x| o g2 < Mt — 5]/, Wi,0<s <t <1,

then



1. X5 defined as exists in L? sense.

2. For any a < ZLQ with probability one, (X,X) satisfies , and . In particular,

for o € [1, %) and any o« € (%, 2%) we have (X, X) € C'.

i

Lol

For fraction Brownian motion, this means o = ﬁ € [1, %), ie. H e (

1.2 Fractional Brownian motion

Now we want to check when can we deduce the condition on rectangular increments. To this
end, we assume

ASSUMPTION 1.7. X := (Xy,...,Xy) is a centred continuous Gaussian process with inde-
pendent components and stationary increments.

Due to the stationary increments, the law of this process is fully determined by
t,t+u
2 2 )
=E | X = .
o (u) [ t,t—i—u] R ( t,t+u )
In order to verify this, one have the following observation:

LEMMA 1.8. Assume that 02(-) is concave on [0, h] for some h > 0. Then,

1.
E[X:Xuy] <0, V0<s<t<u<v<h.

2. If in addition o2(-) is non-decreasing on [0, h], then

0<E[Xe1Xuo] <o?(v—u), YO<s<u<v<t<h.

This comes directly from the concave property. There is nothing interesting, hence, I will
omit the proof. With this in hand, we are able to state a criterion on the p—norm of covariance.

THEOREM 1.9. Let X be a real-valued Gaussian process with stationary increments and o2(-)
concave and non-decreasing on [0, h], some h > 0. Assume also, for constants L, > 1, and all
7 € [0, h)

‘02(7')‘ < L\T|1/9

Then the covariance of X has finite p-variation. More precisely

1Rl 5.2 < Mt = s['/ (1.6)

os[s,1]

for all intervals [s,t] with length |t — s| < h and some M = M (o,L) > 0.

Proof. Consider some interval [s,t] with length |t — s| < h and let D = {t;},D' = {t;} be two

dissections of [s,t]. For fixed t;,t;+1, we claim

Claim. [t holds

4
Z }E (Xtmtz‘ﬂXt;,t;H) ‘ <L |ti+1 - ti’ .
€D’



Suppose we have this, then we see that
0
Z Z ‘E (th‘,tiJrlXt;,t;H)’ < L|t_3|-
tieD t; eD’

In order to show the claim note that

4
Z }E (Xtiyti+1Xt;-,t;+1)‘ 5 HEXtthlX'Hg;[s,ﬂ
! D/

(1.7)
S HEXthtiJrlX‘HQ;[s,ti} + HEXtivtiHX' HZ;[ti,tiH} + HEXti,tiHX' Hi;[tiﬂ,t] :
=1 =:1I :TIFH

For all three terms we can apply Lemma to get the desired bound, for instance for the second
term, note that

)
I = sup Z ‘EXti,tiHXt;.,t;H‘ < sup Z ‘02 (t;_H - t;) ’Q < Ltiv1 — ti] -
D tieD’ b teD’

O]

COROLLARY 1.10 ([FH20, Corollary 10.10] ). Let X = (X', ..., X?) be a centred continuous
Gaussian process with independent components such that each X' satisfies the assumption of the

Theorem 1.9, with common values of h, L and o € [1,3/2). Then X, restricted to any interval
[0,T7, lifts to X = (X, X) € C& ([0,T],R?).

Proof. Set I,, = [(n — 1)h,nh] so that [0,T] C [ Ul U---U Ijp/p41- On each interval I, we
may apply Theorem to lift X, := X|; to a (random) rough path X,, € C (In, Rd). The
concatenation of Xy, X, ... then yields the desired rough path lift on [0, 7. O

With this in hand, we are finally to deduce the case for fractional Brownian motion.

EXAMPLE 1.11 (Fractional Brownian motion, [FH20, Example 10.11] ). Clearly, d-dimensional
fractional Brownian motion BY with Hurst parameter H € (%, %] satisfies the assumptions of
the above theorem / corollary for all components with

o(u) = u*
obviously mon-decreasing and concave for H < % and on any time interval [0,T]. This also
identifies

1

T

1.3 Exponential integrability

Now we want to show a generalised Fernique’s theorem for Gaussian rough path. Recall that the
original Fernique’s theorem is a result about Gaussian measures on Banach spaces. It extends
the finite-dimensional result that a Gaussian random variable has exponential tails. Namely, if
v is a Gaussian measure on separable Banach space B, then there exists o > 0 such that

/ exp (aHxHZ) v(dz) < o0.
X



Now our goal is to show that under the previous condition, there exists n > 0 such that
E (wlIXHi) < 0. (1.8)

To this end, we will need Cameron-Martin regularity. Let’s first recall the definition of Cameron-
Martin space. Let v be a Gaussian on (B,B(B)), then its dual B* C L?(X,~), and we can
define the continuous inclusion j : B* — L?(X,~) as

J(f) = f—ay(f)

=/Bf(3:)7(dw

Then we define X* as the closure of j (B) in L? (B, 7). Furthermore, we define R, : X* — (X*)
as

with

/ f (@) (9 (@) — a, ()7 (da).

In particular, one can show that R, ) C X in the sense that for all f € X*, there exists
yr € X such that

R, (f)g=g(yf), VgeX*

Then we define the Cameron-Martin space as
How = {h € X | 3h € X such that h = R, (h) }.

And we define the norm on it as

1Pl =

In particular, it forms a Hilbert space with
(hg) = (h.3)-

And we call (B,Hcwm,y) as abstract Wiener space. In our case, the underlying space is
C ([0,T);;R?) and X is a Gaussian with X (w) = w. Then the Cameron-Martin space H C
C (0, T); RY) consists of paths t — hy := E (ZX;) where

1 i . L2 (%)
ZeW :=span{X}:t€[0,T],1 <i<d} :

The key ingredient to show ([1.8) is the following theorem:

THEOREM 1.12 (Generalised Fernique theorem). Assume (E,H,p) is an abstract Wiener
space. Let a,o € (0,00) and consider measurable maps f,g: E — [0, 00] such that

1.
p({z:g(z) <aj) >0

2. There exists a null-set N such that

f(z) <g(xz—h)+ol|hlly, VreN® heH.
Then f (-) has Gaussian tail, more precisely, there exists n > 0 such that

E (exp (n1f (2)[?) ) 7 (de) < o0



Hence, to show ([1.8)), we just need to do the following:
1. We set f(w) := | X (w)]|, and show that ||X (w)||, < oo for a.e. w.
2. And there exists C,o > 0 such that

X (@)llo < CUX(w=h)lly+0ollhlly), VheHom (1.9)
We have already seen a sufficient condition for the first criterion, it turns out it will also implies
the second one, and hence we obtain

THEOREM 1.13 ([FH20, Theorem 11.9] ). Let (X;:0 <t <T) be a d-dimensional, centred
Gaussian process with independent components and covariance R such that there exists o € [1, %)
and M < oo such that for everyi € {1,...,d} and 0 <s<t<T,

| R p < Mlt—s|'/e.

o—var;[s,t

Then, for any o € (%, %@), the associated rough path X = (X, X) € Cy built in Theorem 18

such that there exists n = n(M,T, «, o) with
E (exp (n|X[I3)) < oe.

Hence, we only need to show (|1.9)). Instead of working on Holder space, we will now use the
following space:

o (10,71, R?) i= {X € C (0. TER?) | X lp-varfor < o}

where

RS

HXHp—var;[O,T} = | sup Z |Xs,t|p . (1.10)
P step

with supremum taken over all partitions of [0, 7] and this constitutes a seminorm on CP**" . The
1-variation (p = 1) of such a path is of course nothing but its length, possibly +oc.
It has the following connection with Holder regularity:

PROPOSITION 1.14. Suppose f € C ([O,T],Rd), then:

1. If f is a—Hdélder continuous, then

”Xprvar;[O,T] < TaHXHa;[O,T]
with p := é
2. Conwversely, if f is p—wvariation, then there exists reparameterization such that f ot is %
Hélder continuous.

Instead of using Holder regularity, we will consider rough path of p—variation, and we write
X := (X,X) e cr~er ([0, T],R?) if (1.1) and (1.2) holds and

2/p

def
IX[lp/2—varor] = [sup Y [Xetl”? | <o
[s,t]leP

(As before, we shall drop [0,7] from our notation whenever the time horizon is fixed.) The
homogeneous p-variation rough path norm (over [0,7] ) is then given by

1 Xlp-var 0,71 = [ Xllpvar = [ Xllpvar + 1/ I1Xlp/2-var-



REMARK 1.15. Originally, we have o € (%, %] now by the relation p = =, we have p € [2,3).

Hence, we change (1.8 to the following

X @)l sar < C (1K @ = B) ey + 0 IElly) ¥ € Hon (L.11)

Now we see that the |[|-||,, is not convenient. Luckily, we can embed Hcy into the following
space:

PROPOSITION 1.16 (|[FV11, Proposition 11.2] ). Assume the covariance R : (s,t)
E(Xs; ® X;) is of finite o— wvariation (in 2D sense) for o € [1,00). Then H is continuously
embedded in the space of continuous paths of finite o-variation. More, precisely, for all h € H

and all s <t in [0,T]
HhHg—var;[S,t] < HhHH\/ ”R||Q—var;[s,t]2'

Proof. Without loss of generality, we assume X, h are scalar. Let h € H, i.e. hy = E(ZX}) for
some Z € W!. We may assume without loss of generality (by scaling), that ||A[|3, := E (Z?) = 1.
Let (t;) be a dissection of [s,t]. Let ¢’ be the Holder conjugate of p. Using duality for o%-spaces,
we have !

1/e
Zj:‘htj»tﬂl‘g :msﬁl‘lfqz Bijs Tt 44 :BIEBEQE ZZ (Bjs Xt t511)
< Sup \/ ZQ Z/BJ/BK‘E th,tj+1th tk+1)

< sup Z ’Bj|gl |5k‘gl Z ‘E (th7tj+1th=tk+l) |Q

Bylﬁ‘lglgl gk 5.k
1/(20)
Z |E (th7tj+1 ® thytk+1) ‘Q < ||RHQ-VM; [s,t]2*
j7k
The proof is then completed by taking the supremum over all dissections (¢;) over [0, ]. O

Now we want to find a relation between X (w + h) and X (w). As an ansatz, we define for a
rough path X := (X, X), we define its translation in direction h as

T (X) == (Xh,Xh)

where X" := X + h and

d

t
X?t = </ Xh dehJ) = </ (X;,r + hé,r) d (Xg,r + hé,r))
ij=1 s ij=1

5

t
_Xs,t+/ hsr®dX +/ Xsr®dh +/ hs,r@dhr.

provided that h € C17", X € CP7"" with

1 1
-+ ->1
p q



Now recall that we have for (Xt)te[og} a d—dimensional centered continuous Gaussian process
such that X* 1 X7 and )
||RXi”g;[s,t] S |t - S|E

7§ o
particular, this implies

Loiot 2 11

p ¢ 3 37 o o 3

Hence, all terms on the right hand side are well-defined. In order to deduce the inequality

HTh (X)Hp—var 5 (HXHp—var + ||h||q—var> )

with ¢ € [1 3)a it holds X = (X,X) € CI™"" with % € (%,%) and Hoy — C27%%. In
4

> 1.

note that p > p, then

h
Hx prm <X N var + 1l -
SIIhIIQ*UGT
and
max { / hs,?” ® er ; / hsﬂ” ® dhr ) / XS,?“ & dhr } S; Hth_U‘W”X”p—var'
0 p—var 0 p—var 0 p—var

Then use the estimate vVab < a + b for a,b € Ry in view of the homogeneous norm (which
involves X" with a square root), we can conclude the claim. Now the only thing we need to
show is that for all A € Hcy, it holds

Th (X (w)) =X(w+h), forae. w.
Suppose we have this, then we have
X (@) = 1T (w = R)|| < C (X (w = R)|[ + [|hlly) -

THEOREM 1.17 ([FH20, Theorem 11.5]). Assume (X : 0 <t <T') is a continuous d-dimensional,
centred Gaussian process with independent components and covariance R such that there exists
o€ [1,%) and M < oo such that for everyi € {1,...,d} and 0 <s<t<T,

1R 2 < Mlt—s|'/?

o—var;[s,t]
Let o € (%,QLQ} and X = (X,X) € C*([0,T],R?) a.s. be the random Gaussian rough path
constructed in Theorem[1.9. Then

P{w|X(w+h)=T,(X(w)) forall he H})=1.

Proof. In order to prove the rest of this theorems, we need to take a close look at the construction
of Gaussian rough path. Recall that we use Kolmogorov’s criterion to conclude that there exists
a modification X := (X, X) such that for almost every w € C ([0,T],R?), X (w) is a—Hdlder (or
1_variation). Now we define

Ny := {w eC ([OjT],Rd) | X (w) is not o — H('jlder} .

In particular, for any w € Ny, h € H, w + h € Ni. Furthermore, recall that X,; was first
constructed as an L?—limit, in particular, there exists a sequence of partitions (P™) C [s,]
such that

X5t (w) = lim X ®@dX exists for a.e. w. (1.12)

m—00 [ pm



And we denote Ny [, 4 as the set of w such that l) does not hold. Now we define

Noi= (] Moy
[s,t] dyadic

Now choose w € (N7 U N2)“ and the aforementioned partition (P™) and note that

X(w+h)®dX(w+h)
’pm

= X(w)®dX(w)+/ h®dX (w)+ X(w)@dh—l—/ h®dh.
pm m Ppm m
=:1 =11

Since w ¢ N1, X (w) and h satisfies the complementary Young regularity, and hence II converges
to the respective Young integrals. I converges to X ; (w) due to the fact w ¢ Ny. In other words,
for all w € (N7 U N»), h € H and dyadic time s, t

Ty (X (W))s,t =X (w)s,t :

The construction of X ; for non-dyadic times was obtained by continuity (see Theorem [1.9)) and
the above almost-sure identity remains valid. O

References

[FH20] Peter K Friz and Martin Hairer. A course on rough paths. Springer, 2020.

[FV11] Peter Friz and Nicolas Victoir. “A note on higher dimensional p-variation”. In: Elec-
tronic Journal of Probability 16 (2011), pp. 1880-1899.

10



	Gaussian rough path
	Introduction
	Fractional Brownian motion
	Exponential integrability


