
Reflected rough differential equations

Rough paths seminar, 15 July 2022

The content of this seminar is based on the paper [3]. The aim is to develop a solution theory for
reflected rough differential equations, which are formally given by

dyt= f(yt) dXt+dmt; ytdmt=0: (1)

Here f :R!RN is regular enough, X is a given N -dim. rough path and (y;m) are the unknowns.
The novelty, compared to standard RDEs, is that the path y must satisfy the constraint yt2R>0
for all t> 0, which is enforced by the presence of the reflection measure m.

1 Recap on paths of p-variation and controls

The material presented here is mostly from [6], up to changes in terminology and/or notation.

Throughout, I always stands for a real interval, SI := f(s; t)2 I2: s6 tg.

Definition 1. (Control) A map w:SI!R>0 is a control if w(s; s)= 0 for all s2 I, it satisfies
limjt¡sj!0w(s; t)=0 and it is superadditive, namely

w(s; u)+w(u; t)6w(s; t) 8s6u6 t:

Definition 2. (Paths of p-variation) Let E be a Banach space, p2 [0;1). A 2-parameter map
h:SI!E is said to be of finite p-variation, and we write g 2V�2

p(I;E), if

JhKV�2p(I;E) :=
 

sup
�2P(I)

X
(ti;ti+1)2�

jhtiti+1jE
p

!1
p

<1:

For p2 [1;1), a map g: I!E is of finite p-variation, g 2V� p(I;E), if �g 2V�2
p(I ;E); we set

kgkV�p(I;E) := sup
t2I

jgtjE+ J�gKV�2p(I;E):

We denote by V p(I;E) the closure of smooth functions under the V� p-norm, similarly for V2
p(I;E).

Lemma 3. (cf. Proposition 5.8 from [6]) The following are equivalent:

i. g 2C(I;E)\V� p(I;E);

ii. there exists a control wg such that j�gstj6wg(s; t)
1
p for all (s; t)2SI.

The optimal control wg is given by wg(s; t)= JgKV�p([s;t];E)
p .

Some fundamental facts (assume E finite dimensional if needed):

a) If g 2C(I;E)\V� p(I;E), then g 2V q(I;E) for all q > p; similarly V� p(I ;E) ,!V� q(I;E).

b) Function of bounded 1-variation coincide with the measure theory ones, i.e. g 2 V�1(I;E)
if and only if its derivative dg in the sense of distributions is a well defined signed Radon
measure; thus V�1(I;E) contains discontinuous objects (e.g. Heaviside function).

In particular, if g: [`1; `2]!R is monotone, then g 2V�1 and JgKV�1= j�g`1;`2j.
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c) Time-change: g 2 C(I; E) \ V� p(I ; E) if and only if there exists a continuous increasing
function � : I! [0; 1] and a path 
 2C([0; 1];E) which is 1/p¡Hölder such that

gt= 
�(t):

d) Conversely, if j�gstj6 JgK� jt¡ sj�, then g 2V�1/�(I ;E) and wg is just JgK�
1/�jt¡ sj.

e) If g 2V� p(I;E) and f 2C�(E;F ) for �2 (0; 1], then f � g 2V� p/�(I;E).

f) If w1 and w2 are controls, then so is �w1+w2; for any � 2 (0; 1), so is w1(s; t)�w2(s; t)1¡�.

g) If w is a control, then so is wp for any p> 1.

Lemma 4. (Sewing Lemma with controls) Let � > 1 and let A:SI!E satisfy

j�Asutj6w(s; t)�

for some control w. Then there exists C�>0 and a (unique up to constant) map g: I!E such that

j�gst¡AstjE6C�w(s; t)� 8s6 t:

Basic example: if f 2V p(I;R), g 2V� q(I;R) with 1/p+1/q >1, then one can define the Young
integral

R
f dg as the sewing of Ast := fs gst (in line with the Ho�lder case for �=1/p, �=1/ q).

Definition 5. Let p2 [2; 3), N 2N; X =(X;X)2V� p([0; T ];RN)�V�2
p/2([0; T ];RN�N) is a RN-

valued p-variation rough path if it satisfies the relation

�Xsut
ij = �Xsu

i �Xut
j :

It is a continuous geometric rough path, X 2 V p([0; T ];RN) � V2
p/2([0; T ];RN�N) if it can be

obtained, in the p-variation topology, as the limit of smooth rough paths (with canonical lift).

Remark 6. Condition X 2V� p([0; T ];RN)�V�2
p/2([0; T ];RN�N) can be expressed compactly by

imposing the existence of a control wX such that

jXstj+ jXstj1/26wX(s; t)1/p 8(s; t)2S[0;T ]: (2)

Many concepts and results seen until now (controlled RPs, integration against RPs, etc.) naturally
extend to p-variation setting, thanks to Lemma 4 and properties of controls.

2 Skorokhod problem and regularity of Skorokhod map

If y solves (1) and we set gt:=y0+
R
0

t
f(ys)dXs, then we obtain a decomposition y= g+m, where

y must stay positive and satisfy certain constraints w.r.t. m. This is the setting of the so called
Skorokhod problem.

Definition 7. (Skorokhod problem) Let I =[`1; `2], g 2C(I;R) with g`1> 0. The Skorokhod
problem in the domain R>0 associated with g consists in finding a pair (y;m)2C(I;R)2 such that:

i. yt> 0 for all t2 I;

ii. m`1=0, m is increasing and
R
`1

`2ytdmt=0;

iii. yt= gt+mt.
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Remark 8. Since m is continuous and increasing, dm is a nonnegative, locally finite measure,
thus the integral appearing in ii . is meaningful. The three conditions in ii. can be equivalently
formulated in a compact way as

mt=
Z
`1

t

1fyu=0g jdmju 8t2 I:

Theorem 9. (Skorokhod) There exists a unique solution to the Skorokhod problem associated
to g as in Definition 7, which is given by

mt= sup
s2[`1;t]

gs
¡; yt= gt+mt;

where x¡=max f¡x; 0g denotes the negative part. The function �: g 7!m is referred to as the
Skorokhod map.

Naive idea to tackle (1): if y solves a reflected equation of the form (1), then it should be a
fixed point for the map obtained by composition of the rough integral and the Skorokhod's map

y 7!
Z
0

�
f(yt)dXt 7! y~� :=

Z
0

�
f(yt)dXt+�

�Z
0

�
f(yt)dXt

�
: (3)

Problem: find a Banach space where the map defined in this way is a contraction. This is actually
hard, as the map � doesn't need to be continuous in general; this is a problem already at the
Young level, not specific to the rough setting.

Lemma 10. (Lemma 3.5 and Remark 3.6 from [5]) Let �2 (0; 1). Then there exists C > 0
such that for any g 2C�(I) and any [s; t]� I it holds

k�(g)k�;[s;t]6Ckgk�;[s;t]:

However, for any M > 0 one can find examples of g1; g22C� such that

kgik�6 1; kg1¡ g2k�6 1; k�(g1)¡�(g2)k�>M:

The issue is absent in C(I;R) with supremum norms: a straightforward computation yields

sup
t2I
j�(g1)t¡�(g2)tj6 sup

t2I
jgt1¡ gt

2j (4)

The situation seems more optimistic in the framework of p-variation norms:

Theorem 11. (Theorem 2.1 from [4]) For any p2 [1;1) and any [s; t]� I it holds

k�(g1)¡�(g2)kV�p(I;R)6 kg1¡ g2kV�p(I;R):

Indeed, in the Young case (i.e. X 2V p([0; T ];RN) with p2 [1; 2)), Theorem 11 allows to establish
existence and uniqueness of solutions to the reflected RDE, cf. Theorem 3.2 from [4].

Unfortunately, in the regime p> 2 this is not enough. Indeed, to set up contractivity for the
map (3), we also need contractivity for objects morally of the form

R
f(�(g)s)dXs.

Since �(g)2 V 1(I;R), the integral is in fact well-defined, but we cannot control it purely by the
V p-norm of �(g), rather we need its V q-norm for 1/ q > 1¡ 1/p. However, � is not even Ho�lder
continuous in such target space!
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Lemma 12. (Proposition 8 from [3]) For all p> q> 1 and any �2 (0; 1], the Skorokhod map
� is not �-Ho�lder continuous from V�p(I;R) to V� q(I;R).

3 Main results from [3] and further literature

Definition 13. Let T >0, a>0, a differentiable function f :R!RN and a p-variation RN-valued
rough path X with p2 [2; 3) be given. A pair (y;m)2 V p([0; T ];R>0)� V 1([0; T ];R>0) is said to
be a solution the reflected RDE ( 1) on [0; T ] with initial condition a if there exists a 2-index
map y\2V2

p/3([0; T ];R) such that8<: �yst= fi(ys) �Xsti + fij
2 (ys)Xst

ij+ �mst+ yst
\

y0= a; mt=
R
0

t1yu=0 jdmju;
(5)

where fij2 (x) := fi(x)fj0(x).

Remark 14. As in standard rough paths theory, eq. (5) should be interpreted as a local expansion
of the function y, so that for jt¡ sj� 1 it holds

yt�ys+ fi(ys) �Xst
i + f2;ij(ys)Xst

ij+ �mst

up to higher terms of order w(s; t)p/3, where w is a control and p/3<1; observe that since m2V 1,
we don't need to expand the term �mst any further. Condition (5) implies that y is controlled by
X with �derivative� y 0= f(y) (which is actually the original ansatz needed to derive (5) from (1)).

Theorem 15. (Theorem 4 from [3]) Let T >0, a>0, f 2Cb3(R;RN) and (X;X) be a continuous
geometric RN-valued rough path of finite p-variation for some p2 [2;3). Then there exists a unique
solution (y;m) to problem ( 5).

Under weaker assumptions, it is still possible to show existence of solutions.

Theorem 16. (Theorem 12 from [3]) Let T > 0, a > 0, f 2 Cb2(R;RN) and (X;X) be a
continuous geometric RN-valued rough path of finite p-variation for some p 2 [2; 3). Then there
exists at least one solution (y;m) to problem ( 5).

The proof technique of Theorem 16 easily extends to the higher dimensional setting, namely to the
case ofRd-valued paths y which are constrained to stay inside a suitable connected domainD�Rd,
with reflection measure m active only whenever y reaches the boundary @D; see Theorem 14
from [3] for this extension.

The same is not true for Theorem 15, whose proof crucially exploits the 1-dimensionality of y. It
turns out that this is not just a limitation of the proof:

Theorem 17. (Theorem from [7]) For any d>2, N>2 and p>2, one can find a smooth domain
D�Rd, a smooth function f 2C1(Rd;Rd�N), a geometric rough path (X;X) of finite p-variation
and y02D, such that uniqueness of the associated d-dimensional Skorokhod problem doesn't hold.

The counterexample constructed in [7] is actually fairly simple: it is enough to consider d=N =2,
D=R>0�R, f linear. The system in consideration is(

dy=AydX ¡ e1 d
+ e1dK
y � e1> 0; dK =1fy�e1=0gjdK j

where e1=
�
1
0

�
; A=

�
0 1
1 0

�
; (6)
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here X and 
 are continuous scalar functions, with nondecreasing 
.

Due to the simple structure of (6), one can always make sense of it by means of Duhamel's formula,
without needing to specify a rough lift for X . Theorem 2.5 from [7] shows that, if X is sampled as
a fBm of parameter H<1/2, then there exists a deterministic 
H such that P-a.s. the problem (6)
admits infinitely many solutions starting from y0=0, which are moreover adapted. Same result is
not true in the Brownian case, H =1/2!

In a different direction: the uniqueness result from Theorem 15 has been further extended in [1],
where the proof is also simplified.

4 Ideas of proofs
Since there is no clear way to set up a contraction, existence and uniqueness are treated as separate
problem, by another standard meta-strategy:

1. Existence by a priori estimates, compactness and then passing to the limit.

2. Uniqueness by direct comparison of two solutions, usually by means of Gro�nwall lemma.

Interesting aspects involving the relation between RDEs and SDEs in the Brownian setting:

a) In the SDE setting, Step 1. is the most challenging; here compactness means tightness, one
most move to another prob. space by Skorokhod's thm, passage to the limit is not obvious.

Instead Step 2. is relatively simple, thanks to property (4) and standard estimates for
stochastic integrals (e.g. Doob, Burkholder); as a classical paper, see [8].

b) In the RDE setting, since the analysis is pathwise, existence is relatively simple.

However we cannot rely on (4) and the map � doesn't enjoy nice properties in Ho�lder or
p-var. spaces (cf. Lemmas 10 and 12), which makes the uniqueness step harder.

4.1 Existence

The next lemma provides the main a priori estimate needed.

Lemma 18. (cf. proof of Theorem 12 in [3]) Let (y;m) be a solution to ( 5), then there exist
constants C;L, depending on p, kf kCb2 and wX, such that

j�ystj+ j�mstj6CwX(s; t)1/p for all s6 t such that wX(s; t)6L:

Proof. Since y 2V p, m2V 1, y\2V p/3 and (X;X)2V p�V p/2, we can find controls such that

j�ystj6wy(s; t)1/p; j�mstj6wm(s; t); jyst
\ j6w\(s; t)3/p

and wX satisfying (2). Then from (5) and basic manipulations, we get

wy
1/p(s; t).wX

1/p(s; t)+wX
2/p(s; t)+wm(s; t)+w\

3/p(s; t) 8s6 t: (7)

From now on, we will always work with jt¡sj small enough so that wX(s; t)61. In order to control
y\, we compute �y\ in order to apply Lemma 4:

�ysut
\ = �[f(y)]su � �Xut+ f2(ys):Xsu+ f2(yu):Xut¡ f2(ys):Xst

= (�[f(y)]su¡ f(ys) � �Xsu f 0(ys)) � �Xut+ �[f2(y)]su:Xut

= (�ysu¡ f(ys) � �Xsu)Jf 0(y)Ksu � �Xut+(f(ys) � �Xsu)(Jf 0(y)Ksu¡ f 0(ys)) � �Xut

+�[f2(y)]su:Xut
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where we used the notation Jf 0(y)Ksu=
R
0

1
f
0
(ys+ ��ysu) d� in agreement with Taylor expansion.

Plugging in again the expansion (5) gives

j�y\j.
¡
wX
2/p+wm+w\

3/p�
wX
1/p+wy

1/pwX
2/p+wy

1/pwX
2/p;

Plugging in again (7), manipulating the controls and sewing overall yields

w\(s; t)6Cf ;p
�
wX(s; t)+wX

1/3(s; t)wm
p/3(s; t)+wX

1/3
w\(s; t)

�
:

Reestricting ourselves to intervals I such that Cf ;pwX(I)1/36 1/2 then gives

w\(s; t).wX(s; t)+wX
1/3(s; t)wm

p/3(s; t) 8[s; t]� I: (8)

To control wm, first observe that wm(s; t)= �mst and m=�(g) for some path g, so that

wm(s; t)6 kgk0;[s;t] := sup
[u;v]�[s;t]

j�guvj;

by (5), �gst= f(ys) � �Xst+ f2(ys):Xst+ yst
\ , therefore

wm(s; t).wX(s; t)1/p+w\
3/p(s; t): (9)

Inserting (8) in (9), we obtain

wm(s; t)6C~f ;p
�
wX(s; t)1/p+wX

1/p(s; t)wm(s; t)
�
:

Overall, working on intervals I such that

wX(I)6 1^ (2Cf ;p)¡3^ (2C~f ;p)¡p

yields wm(s; t).wX(s; t)1/p, which combined with (7)-(8) gives the conclusion. �

N.B: Lemma 18 doesn't require X to be geometric! However, in order to rigorously obtain exis-
tence, a compactness argument must be developed, which roughly amounts to:

1. Consider approximate solutions (y";m") to the problem associated to smooth X" (for which
wellposedness holds classically), infer a (uniform in ") estimate of the form (18).

2. By compactness, extract a convergent subsequence (y";m")! (y;m) in suitable topology.

3. Show that (y;m) is a solution to the reflected RDE (5). Here property (X";X")! (X;X)
is crucial and this is why Theorems 15-16 are restricted to geometric RPs.

4.2 Uniqueness

In [3], following a similar scheme to [2], uniqueness is accomplished by a doubling of variables
(or tensorization) argument, jointly with the following Rough Gro�nwall Lemma:

Lemma 19. (Lemma 2 from [3]) Let T > 0, g: [0; T ]!R>0 be a path satisfying

�gst6C
�

sup
r2[0;t]

gr
�
w1(s; t)�+w2(s; t) 8(s; t)2S[0;T ] s.t. w1(s; t)6L
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for some C;L> 0 and some controls w1; w2. Then there exists a constant K=K(�;L) such that

sup
t2[0;T ]

gt6 2eKw1(0;T )
�
g0+ sup

t2[0;T ]
e¡Kw1(0;t)w2(0; t)

�
:

Some ideas in the proof of Theorem 15. The �bulk� of the proof is relatively simple: given
two solutions (y; �), (z; �), we want to show that y� z, equivalently jyt¡ ztj=0 for all t2 [0; T ]:

In the classical ODE setting, this can be accomplished by a direct differentiation:

jyt¡ ztj=
Z
0

t

sign (ys¡ zs)(f(ys)¡ f(zs)) �dXs+
Z
0

t

sign (ys¡ zs)(d�s¡ d�s): (10)

By contradiction, assume uniqueness fails and jyt¡ ztj=/ 0 in [0; �]; then it is not hard to see that
the last integral in (10), due to the properties of reflected RDEs, is always decreasing; in fact

ht :=
Z
0

t

sign (ys¡ zs)(d�s¡ d�s)=¡�([0; t])¡ �([0; t])+
Z
0

t

1fyu=zugd(�u+ �u):

The brutal estimate h6 0 inserted in (10) then yields

jyt¡ ztj6 kf kLip
Z
0

t

jys¡ zsj jX_sjds

which by classical Gro�nwall immediately yields a contradiction.

Problem: can we obtain an analogue of (10) in the RDE setting? The answer is positive.

To prove it, the authors in [3] roughly proceed as follows:

1. For ' smooth, derive a �differential� formula for '(y¡z); to this end, it is useful to consider
the pair Y =(y; z) as solving a 2-dim. RDE of the form

�Yst=Fi(Ys) �Xsti +Fij
2 (Ys)Xst+ �Mst+Yst

\

for Fi(Y )=(fi(y); fi(z)), Fij2 (Y )=(fij2 (y); fij2 (z)),M =(�;�). This is a doubling variable
(or tensorization) technique. Setting h(Y )= '(y¡ z), it satisfies an expansion

�h(Y )st=Hi(Ys)�Xst
i +Hij

2 (Ys)Xst
ij+

Z
s

t

'0(yu¡ zu)(d�u¡ d�u)+hst
\

for suitable fieldsHi, Hij
2 . After several computations, one can find an estimate for h\, where

the function ' enters only through the quantity

9'9= sup
x2R

fj'0(x)j+ jxjj'00(x)j+ jxj2j'000(x)jg:

2. Consider a suitable smooth approximation of '(x)= jxj, given by '"(x)= "2+ jxj2
p

; it is
not hard to check that 9'"9 is uniformly bounded. In fact one can pass to the limit "! 0
and show rigorously an expansion for �(Y )= jy¡ z j of the form

��(Y )st = sgn(ys¡ zs) (f(ys)¡ f(zs)) � �Xst+ sgn(ys¡ zs) (f2(ys)¡ f2(zs)):Xst

+
Z
0

t

sign (ys¡ zs)(d�s¡ d�s)+�st
\ ;

together with an estimate for �\, depending on y¡ z and y\¡ z\.
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3. Use the previous step to derive an estimate for y\¡ z\ in function of y ¡ z, as well as a
recursive estimate for the latter; finally use Lemma 19 to conclude that y¡ z� 0. �

Alternative idea of proof from [1], Theorem 4.1. Recall that in the rough case, the main
obstacle in order to set up a more classical contraction procedure was Lemma 12; although the
lemma is true on the whole V� p, there are notable exceptions.

Lemma 20. (Lemma 2.5 from [1]) Let g: [0; T ]!R be a monotone path, then it holds

kXkV�p([0;T ];R)= kXkV�1([0;T ];R) 8p2 [1;1):

Now suppose we are given two solutions (y; �) and (z; �) and that there exists a2 [0; T ) such that
ya=/ za; define u= sup fs2 [0; a): ys= zsg, so that by continuity u<a, yu= zu and ys=/ zs on (u; a].
From now on we will consider the reflected RDE only on [u; a].

Overall, up to shifting/rescaling we may assume u=0, a=T and ys=/ zs on (0; T ]. By one dimen-
sionality and continuity of (y; z), this implies that either ys> zs> 0 for all s > 0, or zs> ys> 0;
assume the first case, the second one being identical. But then this implies that �� 0 and so that
the process �¡ �=¡� is monotone!

Applying Lemma 20, combined with Theorem 11, this allows to set up a contraction procedure:

k�¡ �kV 1= k�¡ �kV p =








��Z

0

�
f(yr)dXr

�
¡�

�Z
0

�
f(zr)dXr

�








V p

.








Z

0

�
[f(yr)¡ f(zr)]dXr










V p

and from here one can use classical results on stability of rough integrals y 7!
R
0

�
f(yr)dXr, available

for f 2Cb3, to set up a closed estimate implying that y = z on some [0; �] with � > 0, yielding a
contradiction. �
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