Infinite-Volume Gibbs Measures II

Ben Breitinger

17. Juni 2021

Gliederung

- Wiederholung
- Eindeutigkeit von Gibbs-Maßen
 - Dobrushins Kriterium der schwachen Abhängigkeit
 - Anwendungen auf Gibbs-Spezifikationen
- (Symmetrien)

Wiederholung

Definition 1

Sei $\pi=\{\pi_{\Lambda}\}_{\Lambda\in\mathbb{Z}^d}$ eine Spezifikation. Ein Maß $\mu\in\mathscr{M}_1(\Omega)$ heißt kompatibel mit (oder spezifiziert durch) π , falls

$$\mu = \mu \pi_{\Lambda}, \quad \forall \Lambda \in \mathbb{Z}^d$$

gilt. Die Menge alle solcher Maße nennen wir $\mathscr{G}(\pi)$.

Definition 2

Falls für jedes $B \in \mathbb{Z}^d$, $\Phi_B : \Omega \to \mathbb{R}$ \mathscr{F}_B -messbar ist, so heißt die Familie $\Phi = \{\Phi_B\}_{B \in \mathbb{Z}^d}$ Potenzial. Die Hamilton-Funktion in der Box $\Lambda \in \mathbb{Z}^d$ bezüglich Φ ist gegeben durch

$$\mathscr{H}_{\Lambda;\Phi}(\omega) = \sum_{B \in \mathbb{Z}^d: B \cap \Lambda \neq \emptyset} \Phi_B(\omega)$$

Damit $\mathcal{H}_{\Lambda;\Phi}$ wohldefiniert ist, nehmen wir an, dass Φ absolut summierbar ist:

$$\sum_{B \in \mathbb{Z}^d: i \in B} \|\Phi_B\|_{\infty} < \infty, \qquad \forall i \in \mathbb{Z}^d.$$

Ising Modell mit weiten Wechselwirkungen

$$\Phi_{B}(\omega) = \begin{cases} -J_{ij}\omega_{ii}\omega_{j} & \text{falls } B = \{i, j\}, \\ -h\omega_{i} & \text{falls } B = \{i\}, \\ 0 & \text{sonst} \end{cases}$$

 $\mathrm{für}\, J_{ij} \geq 0.$

Definition 3

Eine Spezifikation $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ heißt quasilokal, falls jeder Kern π_{Λ} stetig bezüglich der Randbedingung ist, das heißt, wenn für alle $C \in \mathscr{C}$, $\omega \mapsto \pi_{\Lambda}(C \mid \omega)$ stetig ist.

Das zentrale Existenzresultat des letzten Vortrags lautete

Theorem 4

Falls $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ eine quasilokale Spezifikation ist, dann ist $\mathscr{G}(\pi) \neq \emptyset$.

Eindeutigkeit von Gibbs-Maßen

Ziele und nächste Schritte

Wir suchen Bedingungen an eine Spezifikation π , die garantieren, dass $\mathcal{G}(\pi)$ aus nur einem Gibbs-Maß besteht.

Wir können hoffen, in der folgenden Situation solche Bedingungen zu finden.

• Die gesamte Interaktion eines Spins mit allen anderen Spins ist "klein".

Idee

Es erscheint intuitiv, dass $\mathscr{G}(\pi)$ aus nur einem Element besteht, wenn π "in etwa" eine "unabhängige" Spezifikation ist. Wenn also die Wahrscheinlichkeit eines jeden Spins $\pi_{\{i\}}(\cdot \mid \omega)$ für alle $i \in \mathbb{Z}^d$ nur schwach von seiner Umgebung $\omega_{\{i\}^c}$ abhängt.

Wir werden in diesem Abschnitt $\pi_i(\cdot \mid \omega)$ für $\pi_{\{i\}}(\cdot \mid \omega)$ schreiben.

Wir wollen zunächst genauer untersuchen, wie sich eine Funktion f unter Anwendung von π_j verhält. Insbesondere interessiert uns, welchen Einfluss bestimmte $i \in \mathbb{Z}^d$ auf f (oder $\pi_j f$) haben. Das motiviert die Definition:

Definition 5

Definiere für $f: \Omega \to \mathbb{R}$ die Oszillation in $i \in \mathbb{Z}^d$ von f durch

$$\delta_i(f) := \sup_{\substack{\omega, \eta \in \Omega \\ \omega_k = \eta_k \forall k \neq i}} |f(\omega) - f(\eta)|$$

Nun untersuchen wir $\delta_i(\pi_j t)$. Falls i = j ist, so erhalten wir

$$\delta_{l}(\pi_{l}f) = \sup_{\substack{\omega, \omega' \in \Omega \\ \omega_{k} = \omega'_{k} \forall k \neq l}} |\pi_{l}f(\omega) - \pi_{l}f(\omega')| = \sup_{\substack{\omega, \omega' \in \Omega \\ \omega_{k} = \omega'_{k} \forall k \neq l}} \left| \sum_{\eta_{l} = \pm 1} [f(\eta_{l}\omega_{\{i\}^{\complement}})\pi_{l}(\eta_{l}|\omega) - f(\eta_{l}\omega'_{\{i\}^{\complement}})\pi_{l}(\eta_{l}|\omega')] \right| = 0$$

Sei nun $i \neq j$ und $\omega, \omega' \in \Omega$ mit $\omega_{\{i\}^c} = \omega'_{\{i\}^c}$. Wir schreiben $\tilde{f}(\eta) = f(\eta) - f((+1)_j \omega'_{\{j\}^c})$ und rechnen

$$\begin{split} |\pi_{l}f(\omega) - \pi_{l}f(\omega')| &= |\pi_{l}\tilde{f}(\omega) - \pi_{l}\tilde{f}(\omega')| = \left| \sum_{\eta_{j} = \pm 1} [\pi_{l}(\eta_{l}|\omega)\tilde{f}(\eta_{l}\omega_{\{j\}c}) - \pi_{l}(\eta_{l}|\omega')\tilde{f}(\eta_{l}\omega_{\{j\}c}')] \right| \\ &= \left| \sum_{\eta_{j} = \pm 1} [\pi_{j}(\eta_{l}|\omega)(\tilde{f}(\eta_{l}\omega_{\{j\}c}) - \tilde{f}(\eta_{l}\omega_{\{j\}c}')) - (\pi_{j}(\eta_{l}|\omega') - \pi_{j}(\eta_{l}|\omega))\tilde{f}(\eta_{l}\omega_{\{j\}c}')] \right| \end{split}$$

Nun schätzen wir die letzten beiden Summanden einzeln ab:

$$\left| \sum_{\eta_j = \pm 1} \pi_j(\eta_j | \omega) (\tilde{t}(\eta_j \omega_{\{j\}^c}) - \tilde{t}(\eta_j \omega'_{\{j\}^c})) \right| \leq \sum_{\eta_j = \pm 1} \pi_j(\eta_j | \omega) \left| \tilde{t}(\eta_j \omega_{\{j\}^c}) - \tilde{t}(\eta_j \omega'_{\{j\}^c}) \right| \leq \delta_i(t)$$

$$\left| \sum_{\eta_j = \pm 1} (\pi_j(\eta_j | \omega') - \pi_j(\eta_j | \omega)) \tilde{f}(\eta_j \omega'_{\{j\}^c}) \right| \leq \max_{\eta_j = \pm 1} \left| \tilde{f}(\eta_j \omega'_{\{j\}^c}) \right| \sum_{\eta_j = \pm 1} |\pi_j(\eta_j | \omega') - \pi_j(\eta_j | \omega)| \\ \leq \delta_j(t) \|\pi_j(\cdot | \omega) - \pi_j(\cdot | \omega')\|_{TV}$$

Lemma 6 (Dusting-Lemma)

 $\textit{Sei} \ f: \Omega \rightarrow \mathbb{R} \ \textit{und} \ \textit{i}, \textit{j} \in \mathbb{Z}^{\textit{d}}. \ \textit{Dann gilt mit } \textit{c}_{\textit{ji}}(\pi) := \sup_{\substack{\omega, \omega' \in \Omega \\ \omega_{k} = \eta_{k} \forall k \neq \textit{i}}} \|\pi_{\textit{j}}(\cdot \mid \omega) - \pi_{\textit{j}}(\cdot \mid \omega')\|_{\textit{TV}}, \ \textit{dass} \ \delta_{\textit{i}}(\pi_{\textit{i}}\textit{f}) = 0 \ \textit{und}$

$$\delta_i(\pi_i f) \leq \delta_i(f) + c_{ii}(\pi)\delta_i(f), \quad \text{für } i \neq j.$$

Nun setzen wir $f \in C(\Omega)$ voraus. Wir wissen, dass f dann einen Minimierer ω und einen Maximierer η besitzt. Außerdem ist f beschränkt. Da f stetig ist, gibt ein $n \in \mathbb{N}$, sodass $f(\eta') \geq f(\eta) - \varepsilon$ für $\eta' := \omega_{B(\eta)} c \eta_{B(\eta)}$.

$$\max f - \min f = f(\eta) - f(\omega) \le f(\eta') - f(\omega) + \varepsilon \le \sum_{i \in \mathbb{Z}^d} \delta_i(f) + \varepsilon$$

Lemma 7

Sei $f \in C(\Omega)$. Dann gilt

$$\max f - \min f \leq \Delta(f)$$

mit $\Delta(t) := \sum_{i \in \mathbb{Z}^d} \delta_i(t)$.

Bemerkungen

• Insbesondere gilt für $\mu, \nu \in \mathcal{M}_1(\Omega), f \in C(\Omega)$:

$$|\mu(t) - \nu(t)| \leq \Delta(t)$$

Wir schreiben

$$\mathscr{O}(\Omega) := \{ f : \Omega \to \mathbb{R} : \Delta(f) < \infty \}, \qquad C_{\mathscr{O}}(\Omega) := C(\Omega) \cap \mathscr{O}(\Omega)$$

- Jede lokale Funktion f ist in $C_{\mathcal{O}}(\Omega)$. Denn für ein n groß genug gilt für alle $i \in B(n)^{c}$, dass $\delta_{i}(f) = 0$.
- Sei $\omega \in \Omega$. Dann ist $\mathbb{1}_{\omega} \notin \mathcal{O}(\Omega)$

8/26

Lemma 8

Sei $f \in C_{\mathscr{O}}(\Omega)$, $\mu, \nu \in \mathscr{G}(\pi)$ und π eine quasilokale Spezifikation. Gibt es ein $\alpha \leq 1$, sodass

$$|\mu(t) - \nu(t)| \le \alpha \Delta(t),$$

und ist $c(\pi) := \sup_{i \in \mathbb{Z}^d} \sum_{i \in \mathbb{Z}^d} c_{ji}(\pi) < 1$ dann gilt schon

$$|\mu(t) - \nu(t)| \le c(\pi)\alpha\Delta(t).$$

Wir beweisen die folgende Abschätzung mit Induktion über $i \in \mathbb{Z}^d$ bezüglich \prec :

$$|\mu(t) - \nu(t)| \le c(\pi)\alpha \sum_{k \prec i} \delta_k(t) + \alpha \sum_{k \succ i} \delta_k(t)$$

Der Grenzübergang $i \to \infty$ bezüglich \prec mitsamt $\Delta(t) = \sum_{k \in \mathbb{Z}^d} \delta_k(t) < \infty$ liefert dann die Aussage. Im Induktionsschritt ist die Idee, die Induktionshypothese auf $\pi_i t$ anzuwenden. Wegen

$$\Delta(\pi_j t) = \sum_{i \in \mathbb{Z}^d} \delta_i(\pi_j t) \leq \sum_{i \in \mathbb{Z}^d} [\delta_i(t) + c_{ji}\delta_j(t)] \leq \sum_{i \in \mathbb{Z}^d} \delta_i(t) + c(\pi)\delta_j(t) < \infty$$

und, da π_i quasilokal, also $\pi_i f \in C(\Omega)$, ist, können wir die Induktionshypothese $\pi_i f$ anwenden und dann mit dem Dusting-Lemma weiterrechnen:

$$|\mu(f) - \nu(f)| = |\mu(\pi_{i}f) - \nu(\pi_{i}f)|$$

$$\leq c(\pi)\alpha \sum_{k \prec i} \delta_{k}(\pi_{i}f) + \alpha \sum_{k \succ i} \delta_{k}(\pi_{i}f)$$

$$\leq c(\pi)\alpha \sum_{k \prec i} [\delta_{k}(f) + c_{ik}(\pi)\delta_{i}(f)] + \alpha \sum_{k \succ i} [\delta_{k}(f) + c_{ik}(\pi)\delta_{i}(f)]$$

$$\leq c(\pi)\alpha \sum_{k \prec i} \delta_{k}(f) + \alpha \sum_{k \succ i} \delta_{k}(f) + \alpha \delta_{i}(f) \left(c(\pi) \sum_{k \prec i} c_{ik}(\pi) + \sum_{k \succ i} c_{ik}(\pi)\right)$$

$$\leq c(\pi)\alpha \sum_{k \prec i} \delta_{k}(f) + \alpha \sum_{k \succ i} \delta_{k}(f) + \alpha \delta_{i}c(\pi)$$

$$= c(\pi)\alpha \sum_{k \prec i} \delta_{k}(f) + \alpha \sum_{k \succ i} \delta_{k}(f)$$

Gilt im vorigen Lemma $c(\pi) < 1$, so bietet sich ein Kontraktionsargument an. Dies ist der Inhalt des folgenden

Theorem 9 (Dobrushins Kriterium der schwachen Abhängigkeit)

Sei π eine quasilokale Spezifikation, die

$$c(\pi) < 1$$

erfüllt. Dann ist das durch π spezifizierte Wahrscheinlichkeitsmaß eindeutig, also $|\mathscr{G}(\pi)| = 1$.

Seien $\mu, \nu \in \mathcal{G}(\pi)$. Wir wollen zeigen, dass für alle lokalen Funktionen f die Gleichheit $\mu(f) = \nu(f)$ gilt. Dann folgt schon $\mu = \nu$ und damit $|\mathcal{G}(\pi)| = 1$.

Sei also f eine lokale Funktion. Wir zeigen induktiv für $n \in \mathbb{N}$ die Ungleichung

$$|\mu(t) - \nu(t)| \le c(\pi)^n \Delta(t)$$

Da $\Delta(t)<\infty$ und $c(\pi)<1$ muss dann schon $|\mu(t)-\nu(t)|=0$ gelten. Es wurde bereits gezeigt, dass $|\mu(t)-\nu(t)|\leq \Delta(t)$. Angenommen, es ist $|\mu(t)-\nu(t)|\leq c(\pi)^n\Delta(t)$, so wähle $\alpha:=c(\pi)^n\leq 1$. Dann kann wieder das obige Lemma angewandt werden und

$$|\mu(t) - \nu(t)| \le c(\pi)\alpha\Delta(t) = c(\pi)^{n+1}\Delta(t).$$

gilt.

Beweisstrategie

Theorem 9

Dobrushins Kriterium der schwachen Abhängigkeit

Lemma 7

Oszillations Ungleichung: $\Delta(t) \geq \max(t) - \min(t)$

Lemma 8

Iterative Abschätzung:

$$|\mu(t) - \nu(t)| \leq c(\pi) \alpha \Delta(t)$$

Lemma 6

Dusting-Lemma:

$$\delta_i(\pi_j f) \leq \delta_i(f) + c_{ji}(\pi)\delta_j(f)$$

Anwendungen auf Gibbs-Spezifikationen

Unser Ziel ist nun, Dobrushins Kriterium auf interessante Beispiele anzuwenden. Wir wollen zeigen, dass

- Eindeutigkeit des Gibbs-Maßes im klassischen Ising Modell bei h = 0 für $\beta < d/4$.
- Eindeutigkeit im Ising Modell mit weiten Wechselwirkungen bei h = 0 für $\beta \ll 1$ und $J_{ij} \leq f(\|i j\|_{\infty})$ mit $f = O\left(n^{-(d+\varepsilon)}\right)$
 - $f(n) \propto n^{-\alpha}$ für $\alpha > d$
 - $f(n) \propto \exp(-\alpha n)$ für $\alpha > 0$
 - ...

Theorem 10

Sei $\Phi = \{\Phi_B\}_{B \in \mathbb{Z}^d}$ ein absolut summierbares Potenzial und gelte

$$\sup_{i \in \mathbb{Z}^d} \sum_{j \neq i} \sum_{B \supset \{i,j\}} \delta(\Phi_B) < 1, \tag{1}$$

mit $\delta(\Phi_B) := \sup_{\omega,\omega'} |\Phi_B(\omega) - \Phi_B(\omega')|$. Dann ist die Dobrushins Kriterium der schwachen Abhängigkeit erfüllt, wonach es folglich nur ein Gibbs-Maß gibt, welches durch π^{Φ} spezifiziert wird.

Einige Bemerkungen:

• Ist Φ translationsinvariant (dazu später mehr), dann reduziert sich die Ungleichung 1 auf

$$\sum_{j\neq 0}\sum_{B\supset \{0,j\}}\delta(\Phi_B)<1$$

- Wir erhalten bereits die Eindeutigkeit im klassischen Ising Modell bei h = 0:
 - $\Phi_B(\omega) = -\beta \omega_i \omega_i$, falls $B = \{i, j\}$ mit $i \sim j$ und $\Phi_B = 0$ sonst.
 - Da $0 \in \mathbb{Z}^d$ genau 2d Nachbarn hat,

$$\sum_{j\neq 0} \sum_{B\supset \{0,j\}} \delta(\Phi_B) \leq 2d \cdot 2\beta$$

• Mit obigem Theorem folgt Eindeutigkeit des Gibbs-Maßes für $\beta < 1/(4d)$

Wir wenden nun das Korollar auf das Ising Modell mit weiten Wechselwirkungen an bei h = 0 an. In diesem Fall
ist das Potenzial gegeben durch

$$\Phi_{B}(\omega) = \begin{cases} -J_{ij}\omega_{i}\omega_{j} & \text{falls } B = \{i, j\}, \\ 0 & \text{sonst} \end{cases}$$

Eine Abschätzung der Form $J_{ij} \leq f(\|i-j\|_{\infty})$ ist naheliegend. Wir leiten eine Bedingung an f her, die garantiert, dass für $\beta \ll 1$ das durch $\pi^{\beta \Phi}$ spezifizierte Gibbs-Maß eindeutig ist. Mit $\delta(\beta \Phi_B) \leq 2\beta \|\Phi_B\|_{\infty}$ erhalten wir

$$\begin{split} \sup_{i \in \mathbb{Z}^d} \sum_{j \neq i} \sum_{B \supset \{i,j\}} \delta(\beta \Phi_B) & \leq 2\beta \sup_{i \in \mathbb{Z}^d} \sum_{j \neq i} \sum_{B \supset \{i,j\}} \|\Phi_B\|_{\infty} \leq 2\beta \sup_{i \in \mathbb{Z}^d} \sum_{j \neq i} f(\|i - j\|_{\infty}) \\ & = 2\beta \sum_{j \neq 0} f(\|j\|_{\infty}) \leq 2\beta \sum_{n \geq 0} 2d \cdot (2n)^{d - 1} f(n) \leq 2\beta 2^d d \sum_{n \geq 0} n^{d - 1} f(n) \end{split}$$

Die letzte Summe ist endlich, sofern $f \in O(n^{-d-\varepsilon})$. Dann ist $\sup_{i \in \mathbb{Z}^d} \sum_{j \neq i} \sum_{B \supset \{i,j\}} \delta(\Phi_B) < 1$ für $\beta \ll 1$.

Beweisskizze vom Theorem

lacktriangle Wir wollen zeigen, dass für ein absolut summierbares Potenzial Φ

$$\sup_{i\in\mathbb{Z}^d}\sum_{j\neq i}\sum_{B\supset\{i,j\}}\delta(\Phi_B)<1$$

impliziert, dass $c(\pi^{\Phi}) < 1$ gilt.

• Die Definition von $c(\pi^{\Phi})$ liefert, dass

$$c(\pi^{\Phi}) = \sup_{i \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} c_{ij} = \sup_{i \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} \sup_{\substack{\omega, \omega' \in \Omega \\ \omega_k = \eta_k \forall k \neq j}} \|\pi_i(\cdot \mid \omega) - \pi_i(\cdot \mid \omega')\|_{TV} < 1$$

gelten muss, weshalb es reicht, die folgende Ungleichung für beliebige $\omega, \omega' \in \Omega$ mit $\omega_{\{j\}^c} = \omega'_{\{j\}^c}$ zu zeigen:

$$\|\pi_i(\cdot \mid \omega) - \pi_i(\cdot \mid \omega')\|_{TV} \leq \sum_{B\supset\{i,j\}} \delta(\Phi_B)$$

• Mit $\nu_t(\eta_i) := e^{-h_t(\eta_i)}/z_t$ und

$$z_t := \sum_{\eta_i = \pm 1} e^{-h_t(\eta_i)}, \quad h_t(\eta_i) := t \mathscr{H}_{\{i\}, \Phi}(\eta_i \omega_{\{i\}} \circ) + (1-t) \mathscr{H}_{\{i\}, \Phi}(\eta_i \omega_{\{i\}}' \circ)$$

folgt

$$\begin{split} \|\pi_{i}^{\Phi}(\cdot\mid\omega) - \pi_{i}^{\Phi}(\cdot\mid\omega')\|_{\mathcal{W}} &= \sum_{\eta_{i}=\pm 1} |\pi_{i}^{\Phi}(\eta_{i}\mid\omega) - \pi_{i}^{\Phi}(\eta_{i}\mid\omega')| \\ &= \sum_{\eta_{i}=\pm 1} |\nu_{1}(\eta_{i}) - \nu_{0}(\eta_{i})| = \sum_{\eta_{i}=\pm 1} \left| \int_{0}^{1} \frac{d\nu_{t}(\eta_{i})}{dt} dt \right| \leq \int_{0}^{1} \sum_{\eta_{i}=\pm 1} \left| \frac{d\nu_{t}(\eta_{i})}{dt} dt, \right| \\ &= \sum_{\eta_{i}=\pm 1} |\nu_{1}(\eta_{i}) - \nu_{0}(\eta_{i})| = \sum_{\eta_{i}=\pm 1} \left| \int_{0}^{1} \frac{d\nu_{t}(\eta_{i})}{dt} dt \right| \leq \int_{0}^{1} \sum_{\eta_{i}=\pm 1} \left| \frac{d\nu_{t}(\eta_{i})}{dt} dt, \right| \\ &= \sum_{\eta_{i}=\pm 1} |\nu_{1}(\eta_{i}) - \nu_{0}(\eta_{i})| = \sum_{\eta_{i}=\pm 1} \left| \int_{0}^{1} \frac{d\nu_{t}(\eta_{i})}{dt} dt \right| \leq \int_{0}^{1} \sum_{\eta_{i}=\pm 1} \left| \frac{d\nu_{t}(\eta_{i})}{dt} dt \right|$$

$$\nu_t(\eta_i) := e^{-h_t(\eta_i)}/z_t, \quad z_t := \sum_{\eta_t = \pm 1} e^{-h_t(\eta_i)}, \quad h_t(\eta_i) := t \mathscr{H}_{\{i\}, \Phi}(\eta_i \omega_{\{i\}^c}) + (1-t) \mathscr{H}_{\{i\}, \Phi}(\eta_i \omega_{\{i\}^c}')$$

Wir schreiben

$$\Delta\mathscr{H}_{i}(\eta_{i}) := \mathscr{H}_{\{i\},\Phi}(\eta_{i}\omega_{\{i\}^{\mathtt{c}}}) - \mathscr{H}_{\{i\},\Phi}(\eta_{i}\omega_{\{i\}^{\mathtt{c}}}')$$

womit wir unter Verwendung von $d(-h_t(\eta_i))/dt = \Delta \mathcal{H}_i(\eta_i)$ erhalten, dass

$$\frac{d\nu_t(\eta_i)}{dt} = \nu_t(\eta_i)\Delta\mathscr{H}_i(\eta_i) - \nu_t(\eta_i) \sum_{\eta_i = \pm 1} \nu_t(\eta_i)\Delta\mathscr{H}_i(\eta_i) = \left[\Delta\mathscr{H}_i - \mathbb{E}_{\nu_t}[\Delta\mathscr{H}_i]\right]\nu_t(\eta_i)$$

• Nun ist mit $m = (\max \Delta \mathcal{H}_i + \min \Delta \mathcal{H}_i)/2$

$$\sum_{m=+1} \left| \frac{d\nu_t(\eta_l)}{dt} \right| = \mathbb{E}_{\nu_t} \left[\left| \Delta \mathcal{H}_l - \mathbb{E}_{\nu_t} [\Delta \mathcal{H}_l] \right| \right] \leq \mathbb{E}_{\nu_t} \left[\left(\Delta \mathcal{H}_l - \mathbb{E}_{\nu_t} [\Delta \mathcal{H}_l] \right)^2 \right]^{1/2} \leq \mathbb{E}_{\nu_t} \left[\left(\Delta \mathcal{H}_l - m \right)^2 \right]^{1/2}$$

• Mit $|\Delta \mathcal{H}_i - m| \leq \frac{1}{2} \max_{\eta_i, \eta_i' = \pm 1} |\Delta \mathcal{H}_i(\eta_i) - \Delta \mathcal{H}_i(\eta_i')|$ erhalten wir

$$\|\pi_i^{\Phi}(\cdot\mid\omega) - \pi_i^{\Phi}(\cdot\mid\omega')\|_{\mathcal{T}V} \leq \frac{1}{2} \max_{\eta_i,\eta_i'=+1} |\Delta\mathscr{H}_i(\eta_i) - \Delta\mathscr{H}_i(\eta_i')|$$

• Es verbleibt $|\Delta \mathcal{H}_i(\eta_i) - \Delta \mathcal{H}_i(\eta_i')|$ abzuschätzen:

$$\begin{split} &|\Delta \mathscr{H}(\eta_i) - \Delta \mathscr{H}(\eta_i')| \\ &= \left| \sum_{B \supset \{i,j\}} \left[\Phi_B(\eta_i \omega_{\{i\}^c}') - \Phi_B(\eta_i \omega_{\{i\}^c}) \right] - \sum_{B \supset \{i,j\}} \left[\Phi_B(\eta_i' \omega_{\{i\}^c}') - \Phi_B(\eta_i' \omega_{\{i\}^c}) \right] \right| \leq 2 \sum_{B \supset \{i,j\}} \delta(\Phi_B) \end{split}$$

Also

$$\|\pi_i^{\Phi}(\cdot \mid \omega) - \pi_i^{\Phi}(\cdot \mid \omega')\|_{TV} \leq \sum_{B \supset \{i,i\}} \delta(\Phi_B),$$

Ausblick

Es gibt ein weiteres wesentliches Ergebnis:

• Eindeutigkeit falls d=1Falls d=1, so gilt Eindeutigkeit für alle Potenziale, bei denen der Einfluss von weit entfernten Spins vernachlässigbar ist, dass $|\mathscr{G}(\pi)| = 1$. Dieses Ergebnis gilt insbesondere für alle Potenziale mit endlicher Reichweite und ist stärker als die bisherigen Resultate, da $\beta > 0$ beliebig ist.

Fragen?

(Symmetrien)

Idee

Besitzt eine Spezifikation π gewisse Symmetrien, so ist es naheliegend, dass die Maße in $\mathcal{G}(\pi)$ auch in einem gewissen Sinne invariant bezüglich der Symmetrien sind.

Vorgehensweise:

- Formalisierung von "Symmetrie"
- Invarianz von $\mathscr{G}(\pi)$ bezüglich Symmetrien, die π besitzt
- Invarianz von Gibbs-Maßen, falls diese eindeutig sind

Definition 11

Eine Transformation ist eine Familie von Abbildungen $(\tau_g)_{g\in G}$ für eine Gruppe (G,\cdot) , die die folgenden Bedingungen

- $(\tau_{g_1} \circ \tau_{g_2})(\omega) = \tau_{g_1 \cdot g_2}(\omega)$ für alle $g_1, g_2 \in G, \ \omega \in \Omega$ und
- $\tau_{id}(\omega) = \omega$ für alle $\omega \in \Omega$, wobei id \in G die Identität bezeichnet,

erfüllt. Außerdem definieren wir die Wirkung der Gruppe G auch auf Funktionen und Maße

$$\tau_g f(\omega) := f(\tau_g^{-1}\omega), \qquad \tau_g \mu(A) := \mu(\tau_g^{-1}A)$$

Wir schreiben $\tau_g \pi := \{ \tau_g \pi_{\Lambda} \}_{\Lambda \Subset \mathbb{Z}^d}$.

Einige Bemerkungen:

- Eigentlich wird hier der Begriff einer Gruppenaktion aus Ω definiert. Die Gruppe G operiert auf Ω.
- Für integrierbare Funktionen f lässt sich leicht nachrechnen, dass $\tau_g \mu(f) = \mu(\tau_g^{-1} f)$ gilt:

$$(\tau_g \mu)(f) = \int f(\omega)(\tau_g \mu)(d\omega) = \int f(\omega)\mu(\tau_g^{-1}d\omega) = \int f(\tau_g \omega)\mu(d\omega) = \mu(\tau_g^{-1}f)$$

Definition 12

Eine interne Transformation ist eine Transformation einer Gruppe G, die auf Ω^0 operiert. Wir erweitern die Aktion von G auf ganz Ω , indem wir

$$(\tau_g \omega)_i := \tau_g \omega_i$$

für alle $i \in \mathbb{Z}^d$ schreiben. Weiterhin schreiben wir

$$(\tau_g \pi)_{\Lambda}(A \mid \omega) := \pi_{\Lambda}(\tau_g^{-1}A \mid \tau_g^{-1}\omega).$$

Eine räumliche Transformation ist gegeben durch eine Gruppe G, die auf \mathbb{Z}^d operiert. Wir setzen die Operation ebenso auf Ω und π_{Λ} aus:

$$(\tau_g \omega)_i := \omega_{\tau_g^{-1}_i}, \qquad (\tau_g \pi)_{\Lambda} (A \mid \omega) := \pi_{\tau_g^{-1}_{\Lambda}} (\tau_g^{-1} A \mid \tau_g^{-1} \omega)$$

Beispiele:

Sei von nun an $(\tau_g)_{g\in G}$ eine interne Transformation.

Definition 13

Eine Spezifikation π heißt G-invariant, falls für alle $\Lambda \in \mathbb{Z}^d$ und $g \in G$ die Identität $(\tau_g \pi)_{\Lambda} = \pi_{\Lambda}$ gilt.

Ein Beispiel:

• Im Ising-Modell bei h=0 ist die Spezifikation π invariant unter der internen Transformation des Spin-Flips, das heißt unter der Wirkung der Gruppe $\mathbb{Z}/2\mathbb{Z}$ auf Ω_0 .

Theorem 14

Sei G eine interne Transformation und π eine G-invariante Spezifikation. Dann ist $\mathcal{G}(\pi)$ abgeschlossen unter der Wirkung von G: Ist $\mu \in \mathcal{G}(\pi)$, so folgt $\tau_g \mu \in \mathcal{G}(\pi)$ für alle $g \in G$.

Sei $g \in G$, $\Lambda \subseteq \mathbb{Z}^d$, $\omega \in \Omega$ und $A \in \mathscr{F}$. Wir zeigen, dass $\tau_g \mu$ kompatibel mit π ist:

$$\begin{split} (\tau_g \mu)(\pi_{\Lambda}(A)) &= \mu(\pi_{\Lambda}(A \mid \tau_g(\cdot))) = \int \pi_{\Lambda}(A \mid \tau_g(\omega))\mu(d\omega) \\ &= \int \pi_{\Lambda}(\tau_g^{-1}A \mid \omega)\mu(d\omega) = \mu(\pi_{\Lambda}(\tau_g^{-1}A)) = \mu(\tau_g^{-1}(A)) = \tau_g \mu(A) \end{split}$$

Folglich ist $\tau_q \mu \in \mathscr{G}(\pi)$.

Corollary 15

Falls $\mathscr{G}(\pi) = \{\mu\}$ und π eine G-invariante Spezifikation ist, so ist auch μ G-invariant.

Definition 16

Sei π eine G-invariante Spezifikation. Falls es ein $\mu \in \mathscr{G}(\pi)$ gibt, sodass $\tau_g \mu \neq \mu$, so sagen wir, dass die von G beschriebe Symmetrie spontan gebrochen wird unter μ .

Beispiele:

- Wir haben vorhin die Eindeutigkeit des Gibbs-Maßes μ im verschiedenen Varianten des Ising Modells bei hohen Temperaturen (β « 1) gesehen. In diesem Fall ist μ invariant unter globalem Spin-Flip.
- Ist das Gibbs-Maß hingegen nicht eindeutig und ist τ_g der globale Spin-Flip, so ist es naheliegend, dass $\tau_o \mu^+ = \mu^-$

Fragen?

Referenzen

Sacha Friedli and Yvan Velenik (2017)

Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction.

Cambridge University Press

Hans-Otto Georgii (2011)

Gibbs Measures and Phase Transitions.

 $De\ Gruyter$