Liquid-Vapor Equilibrium

Julius Pan

- Lattice gas: Diskretisierung auf $\,\mathbb{Z}^d$ mithilfe von imaginären Würfeln
- (endliche) attraktive Interaktion für Teilchen i und j: K(i,j), symmetrisch und translationsinvariant

Def.: Hamiltonfunktion

Sei $\Lambda \subset \mathbb{Z}^d$ endlich, $\eta \in \{0,1\}^{\Lambda}$ eine Konfiguration. Die Hamiltonfunktion vom lattice gas ist:

$$H_{\Lambda;K}(\eta) := -\sum_{\{i,j\}\subset\Lambda} K(i,j)\eta_i\eta_j$$

Canonical ensemble (Teilchenanzahl N ist fix) vs. Grand canonical ensemble (N fluktuiert)

Def: Canonical Gibbs-Verteilung

Sei $\Lambda\subset\mathbb{Z}^d$ endlich, $N\in\{0,1,...,|\Lambda|\}.$ Die canonical Gibbs-Verteilung ist:

$$\nu_{\Lambda;\beta,N}(\eta) := \frac{1}{Q_{\Lambda;\beta,N}} e^{-\beta H_{\Lambda;K}(\eta)} \cdot \mathbb{1}_{\{N_{\Lambda}(\eta) = N\}}$$

wobei

$$Q_{\Lambda;\beta,N} := \sum_{\eta \in \{0,1\}^{\Lambda}, N_{\Lambda}(\eta) = N} e^{-\beta H_{\Lambda;K}(\eta)}$$

Def: Grand Canonical Gibbs-Verteilung

Sei $\mu \in \mathbb{R}$ das chemische Potential. Die grand canonical Gibbs-Verteilung ist:

$$\nu_{\Lambda;\beta,\mu}(\eta) := \frac{1}{\Theta_{\Lambda;\beta,\mu}} e^{-\beta(H_{\Lambda;K}(\eta) - \mu N_{\Lambda}(\eta))}$$

wobei

$$\Theta_{\Lambda;\beta,\mu} := \sum_{\eta \in \{0,1\}^{\Lambda}} e^{-\beta(H_{\Lambda;K}(\eta) - \mu N_{\Lambda}(\eta))}$$

Theorem 4.5 (Freie Energie)

Seien $\Re \ni \Lambda_n \uparrow \uparrow \mathbb{Z}^d, \rho \in [0,1]$ und $N_n \in \mathbb{N}$ mit $\frac{N_n}{|\Lambda_n|} \to \rho$. Dann existiert

$$f_{\beta}(\rho) := \lim_{n \to \infty} f_{\Lambda_n;\beta}(\rho)$$

und ist unabhängig von $(\Lambda_n)_{n\geq 1}$ und $(N_n)_{n\geq 1}$. Wir nennen f_β freie Energie (free energy). Außerdem ist $\rho\mapsto f_\beta(\rho)$ stetig und konvex.

Theorem 4.11 (Druck)

Seien $\Re \ni \Lambda_n \uparrow \uparrow \mathbb{Z}^d$. Für alle $\mu \in \mathbb{R}$ existiert

$$p_{\beta}(\mu) := \lim_{n \to \infty} p_{\Lambda_n;\beta}(\mu)$$

Wir nennen p_{β} den **Druck**. Außerdem ist $\mu \mapsto p_{\beta}(\mu)$ stetig und konvex.

Theorem 4.13

Die Äquivalenz der Ensembles auf dem Level des Potentials gilt auch für das lattice gas. Die freie Energie und der Druck ergeben sich durch Legendre-Transformation des anderen.

$$f_{\beta}(\rho) = \sup_{\mu \in \mathbb{R}} \{ \mu \rho - p_{\beta}(\mu) \} \qquad \forall \rho \in [0, 1]$$
 (4.31)

$$p_{\beta}(\mu) = \sup_{\rho \in [0,1]} \{\rho\mu - f_{\beta}(\rho)\} \qquad \forall \mu \in \mathbb{R}$$
 (4.32)

Eigenschaften der Verteilungen in den Ensembles:

Theorem 4.19

Seien $\Re \ni \Lambda \uparrow \uparrow \mathbb{Z}^d$. Falls $\frac{N}{|\Lambda|} \to \rho \in (0,1)$ und f_β strikt konvex, dann gilt für ein festes $a \in (0,1)$ und für alle $\epsilon > 0$, dass für $\Lambda \uparrow \uparrow \mathbb{Z}^d$:

$$\nu_{\Lambda;\beta,N}(\exists \Lambda' \in D_a(\Lambda): |\frac{N_{\Lambda'}}{|\Lambda|} - \rho| \geq \epsilon) \to 0$$

 ${\bf exponentiell\ schnell\ konvergiert.}$

Theorem 4.15

Sei $\Re \ni \Lambda_n \uparrow \uparrow \mathbb{Z}^d$ und $J \subset [0,1]$ ein Intervall. Dann gilt:

$$\lim_{n\to\infty}\frac{1}{|\Lambda_n|}log\ \nu_{\Lambda_n;\beta,\mu}(\frac{N_{\Lambda_n}}{|\Lambda_n|}\in J)=-\min_{\rho\in J}I_{\beta,\mu}(\rho)$$

wobei

$$I_{\beta,\mu}(\rho) := \beta[f_{\beta}(\rho) - \mu\rho - \min_{\rho' \in [0,1]} \{f_{\beta}(\rho') - \mu\rho'\}]$$

rate function heißt.

Alle obigen Ergebnisse basieren auf:

¹Sascha Friedli Sacha and Yvan Velenik, "Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction", Cambridge: *Cambridge University Press*, 2017

Nearest-neighbor lattice gas: Die lattice-gas-Version des Ising-Modells:

Das Mapping der Spins (Ising-Modell) auf die Konfigurationen (lattice-gas-Modell) lässt uns die Ergebnisse aus Kapitel 3 verwenden und liefert:

Theorem 4.22

Sei $\mu \mapsto p_{\beta}(\mu)$ der Druck des nearest-neighbor lattice gas.

- 1. Falls d=1: p_{β} ist überall analytisch.
- 2. Falls $d \geq 2$: p_{β} ist überall analytisch, außer bei $\mu = \mu*$ Außerdem gilt für

$$\beta_c^{l.g.} = \beta_c^{l.g.}(d) := \frac{1}{4}\beta_c(d)$$

 p_β ist differentierbar bei $\mu*,$ falls $\beta<\beta_c^{l.g.}$ und p_β ist nicht differentierbar bei $\mu*,$ falls $\beta>\beta_c^{l.g.}$ und

Es ergeben sich für d>1 und $\beta > \beta_c^{1.g.}$ folgender Druck und Dichte:¹



Der Druck in Abhängigkeit von der Dichte:¹

