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1 Overview

Basic goal of statistical mechanics is to give a mechanical model of thermodynamic behaviour.

We have to undestand what thermodynamics is about and what could be a mechical model of it.

The appropriate mechanical model will be a probabilistic model of the motion of atoms (or in general of
very simple microscopic constituents of matter, e.g. in magnetic phenomena one is concerned mostly with
the local magnetization in a solid)

Our book focus on very simple discrete probabilistic models (real mechanical models are continuous, i.e.
their state is described by continuous variables not discrete, or in the quantum case the state of the system is
even described by a vector in infinite dimensional Hilbert space). These models are unrealistic but somehow
capture the basic phenomena which one would like to describe.

My point today is to have a vague idea on which these phenomena.

2 Thermodynamics

Thermodynamics is the physical theory which describe the macroscopic states and transformations of matter
composed by many individual atoms (or simple components).

A basic example of a thermodynamical system is a gas. From the point of view of mechanics (or atomic
physics) a gas is just a collection of atoms which move freely in a given portion of space. In first approx.
one think about the different atoms to be “independent” one another. The atoms do not “see each other”
and they move as billiard balls on the table, reflecting on the walls of the container.

N ≈1023 typical number of atoms involved in the macroscopic description. Each atom has a position and a
velocity, i.e. it is described by a point in ℝ6 ⇒ The state of this system is a point in ℝ6N. We do not have
a good intuition of the geometry of such very large Euclidean spaces.

In particular the macroscopic state of the gas does not really depend on the precise value of all these coordin-
ates. At our scale we can only perceive/control few characteristics of this gas:

• N the number of particles,

• V volume they occupy,

• U their total energy (i.e. the capacity to produce work, this is somehow a derived quantity, it cor-
responds to the sum of the kinetic energy of each particle and their potential energy).

In particular situations there could be also other quantities:

• P total momentum. In this case the total energy is E =N (P2/2m)+U

• M total magnetic momentum. In case of magnetic materials.

• M̃ total rotational momentum: a star.
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What make these quantities relevant is that in absence of interactions with external world they are constants
of motion in the mechanical system.

Z ∈ℝ6N →(U,V ,N)

It is an empirical fact that (U, V , N) describe completely the macroscopic system at equilibrium: you
prepare the system and allow it to settle in a state where you do not see any more macroscopic change. The
variables (U,V ,N) only make sense at equilibrium. If the system is not in equilibrium they do not exists.
They parametrize only the manifold of equilibrium states of the system.

equilibriumstate

manifoldof eq. states

noneq. transformation
this happens in the full
state space and not in the
manifold of eq. states

quasistatic transform.
(it moves on the manifold)

S =const

S0

S1

S1 ⩾S0

One can also look separately at different parts i = 1, . . . ,K of this big systems as subsystems and associate
to them (Ui,Vi,Ni)i=1, . . . ,K and one has the relation

U =U1 + ⋅ ⋅ ⋅ +UK, V =V1 + ⋅ ⋅ ⋅ +VK, N =N1 + ⋅ ⋅ ⋅ +NK,

i.e. these quantities are extensive: they are additive on subsystems.

One typical situation is when we have two systems (U1, V1, N1) and (U2, V2, N2) (imagine two boxes with
gas inside) and we put them together, (i.e. we remove a wall between the two boxes, or we allow the wall
to move – a piston, or we allow the particles to exchange energy via the wall). When you allow interaction
only some functions of (U1, V1, N1) and (U2, V2, N2) remain constant, for example if you allow exchange
of energy one still has that U1 + U2 remain constant in time. If we don't allow immigration/emigration of
particles then we must have N1 + N2 constant and if we don't allow change of total volume we must have
V1+V2.

So this global system could evolve until it settle in a new equilibrium state (see picture above) described
again by new variables (U1,V1,N1,U2,V2,N2). Which is this new state???

The basic postulate of thermodynamics (in these lectures) is that for every system there exists a function
S(Ui,Vi,Ni) the entropy which depends only on the kind of system and such that the entropy of the sum of
two subsystems in equilibrium is given by the sum the entropies (i.e. the entropy is extensive) and moreover
the entropy always increase in time for a closed system, i.e. before and after a transformation between
equilibrium states. This tells me that if (U1,V1,N1,U2,V2,N2) is an equilibrium state of the coupled system
then

S(U1,V1,N1,U2,V2,N2)=S(U1,V1,N1)+S (U2,V2,N2)

⩾S(U1′,V1′,N1′)+S (U2′,V2′,N2′)
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where (U1′, V1′, N1′, U2′, V2′, N2′) is any other state describing the two subsystems which can evolve into
(U1,V1,N1,U2,V2,N2). In particular S(U1,V1,N1,U2,V2,N2) maximises S(U1′,V1′,N1′)+S (U2′,V2′,N2′) among
all states of the subsystems which can lead to the final state.

This is the basic variational principle on which thermodynamics is based.

Let's see this principle at work: imagine we allow only exchange of energy (in the form of heat) but not of
volume or matter, then letting U =U1 +U2 we need to have

S(U1,V1,N1,U2,V2,N2)= max
x∈[0,U]

[S(U −x,V1,N1)+S (x,V2,N2)]

and moreover U1 =U −x∗, U2 =x∗ where x∗ is the maximum point. Then we must have

0= ∂
∂xS(U −x,V1,N1)+ ∂

∂xS (x,V2,N2)

=−� ∂S
∂U�

V,N
(U −x,V1,N1)+� ∂S

∂U�
V,N

(x,V2,N2)

that is

� ∂S
∂U�

V,N
(U2,V2,N2)=� ∂S

∂U�
V,N

(U1,V1,N1)

calling 𝛽=� ∂S
∂U�V,N one has 𝛽(U2,V2,N2)=𝛽(U1,V1,N1) in equilibrium, i.e. this 𝛽 function has to be equal

in the two subsystems in equilibrium. One call it the inverse temperature, i.e. T = 1/𝛽 is the absolute
temperature, measures in Kelvin.

From the same argument one derives also that energy flows from system at higher temperature to systems
at lower temperatures.

For usual materials one has 𝛽 > 0 (not always the case however, there exists systems at negative temper-
ature), i.e. entropy increases with the energy.

In real life a common situation is when we have a “small system” in thermal contact with a “big system”,
e.g. think about an object in a room, then the two have the same temperature in equilibrium. If the second
system is very big then the change in internal energy given by exchanges with the first system is negligible,
so in the computation above, if we denote by y the energy of the small system we have (by Taylor expan-
sion)

S(y,V1,N1)+S (U −y,V2,N2)≈S(y,V1,N1)+S (U,V2,N2)−y� ∂S
∂U�

V,N
(U,V2,N2)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

𝛽(U,V2,N2)=𝛽(y,V1,N1)

≈S(y,V1,N1)−𝛽y+const+ ⋅ ⋅ ⋅

So in thermal contact with “reservoir” at temperature 𝛽=𝛽(U,V2,N2) the first system will try to maximise
the function

y↦S(y,V1,N1)−𝛽y

to be in equilibrium. The function

F(𝛽,V1,N1)=max
U1

[S(U1,V1,N1)−𝛽U1]

is called “free energy”: it describes the work available to a system which is in thermal equilibrium with a
reservoir at temperature 𝛽.
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We say that 𝛽 is the conjugate variable to the energy, i.e. by controlling 𝛽 I can control the quantity of
internal energy. (This relation is related with Legendre transformation in the theory of convex functions).

You see here that various situations give rise to various variational principles involving the entropy and the
other thermodynamic quantities.

3 Statistical mechanics
Stat mech wants to derive a connection between the description involving all the 6N ≈ 1023 degrees of
freedom of a general mechanical motion of the system and the few degrees of freedom in thermodynamic
equilibrium. This connection goes via Boltzmann “discovery”:

S(U,V ,N)∝logΩ(U,V ,N)

where Ω(U, V , N) is the number of microscopic configurations (measured in an appropriate way) com-
patible with the given macroscopic ones (U, V , N). One can say this probabilistically by saying that the
probability P to observe a given macroscopic state (U,V ,N) is given by

P∝Ω(U,V ,N)∝eS(U,V,N)/k .

Underlying this last equivalence is the idea that all the microscopic states X are equiprobable

P(X)∝1

This formula gives a connection with probability theory.

When the system is in thermodynamic equilibrium with a larger system at temperature 𝛽 then the probab-
ility to observe a given configuration X is given by

P(X)∝e−𝛽U(X)

then

�
X

e−𝛽U(X) =�
U

Ω(U,V ,N)e−𝛽U =�
U

e−𝛽U+S(U)/k ≈ emaxU(S(U)−k𝛽U)/k ≈eF(𝛽,V,N)

in particular we have found the relation

F(𝛽,V ,N)= log�
X

e−𝛽U(X)

which will be important in the rest of the book.

In the passage from the statistical mechanical model to the thermodynamic quantities one important step is
the infinite volume (or infinite # of particles) limit, i.e. we really want to compute for V =vN

F(𝛽,v, 1)= 1
NF(𝛽, vN ,N)= lim

N→∞

1
NF(𝛽, vN ,N)= lim

N→∞

1
N log�

X
e−𝛽U(X).

We want to show:

• that this limit exists (so that all the quantities we compute are extensive)

• we want to see appearing the variational principles.
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