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This an extended version of the material presented in the second part of the course (10h). This script
has not been seriously revised and contains typos and inconsistencies: use at your own risk. Also
I didn't tried to cite all the literature associated to the material presented. Sometimes I cite sources
where the reader can find more detailed discussions. These notes have been written with TEXMACS.

1 Introduction
At the end of the first part of the course we introduced two measures𝜇L,𝜀,𝜈L,𝜀 defined as follows.

Let 𝜀=2−N and M=2N ′. LetΛ𝜀=(𝜀ℤ)d⊆ℝd the square lattice in dimension d of side length 𝜀,
Λ𝜀,M=Λ𝜀∩𝕋M

d =(𝜀ℤ)d∩[−M/2,M/2)d a finite box of (M/𝜀+1)d points which we think with
periodic boundary conditions in every directions.

Fourier transform onΛ𝜀 is defined as

ℱ𝜀 f (x)=𝜀d �
x∈Λ𝜀

f (x)e−2𝜋ik⋅x, ℱ𝜀−1g(x)=�
Λ̂𝜀

g(k)e2𝜋ik⋅xdk,

with Λ̂𝜀=(𝜀−1[−1,1))d the dual ofΛ𝜀. These definitions can be extended to the finite lattice in a
natural way, with Λ̂𝜀,M=((ℤ/M)∩[−𝜀−1/2,𝜀−1/2))d and

ℱ𝜀,M f (x)=𝜀d �
x∈Λ𝜀,M

f (x)e−2𝜋ik⋅x, ℱ𝜀,M−1 g(x)= 1
Md �

k∈Λ̂𝜀,M

g(k)e2𝜋ik⋅x.

The measure 𝜇 is the law of a family of Gaussian r.v. (X𝜀,M(x))x∈Λ𝜀,M with covariance

𝔼𝜇[X𝜀,M(x)X𝜀,M(y)]=(m2−Δ𝜀)−1(x,y), x,y∈Λ𝜀,M

where Δ𝜀 is the discrete Laplacian with periodic boundary conditions, i.e.

Δ𝜀 f (x)=𝜀−2 �
i=1, . . . ,d

( f (x+𝜀ei)−2 f (x)+ f (x−𝜀ei)), x∈Λ𝜀

where (ei)i=1,. . . . ,d is the canonical basis ofℝd. We introduce also discrete derivatives

∇𝜀if (x)=
f (x+𝜀ei)− f (x)

𝜀 , ∇𝜀−,if (x)=
f (x)− f (x−𝜀ei)

𝜀

and note that (∇𝜀i)∗=−∇𝜀−,i and Δ𝜀=∑i=1
d ∇𝜀−,i∇𝜀i. Moreover

(∇𝜀iℱ−1g)(x)=�
Λ̂𝜀

g(k)e
2𝜋i𝜀ki −1
𝜀 e2𝜋ik⋅xdk
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(∇𝜀−,i∇𝜀iℱ−1 g)(x) = �
Λ̂𝜀

g(k)e
2𝜋i𝜀ki − 1
𝜀

1− e−2𝜋i𝜀ki

𝜀 e2𝜋ik⋅xdk =

−�
Λ̂𝜀

g(k)(2𝜀−1sin(𝜋𝜀ki))2 e2𝜋ik⋅xdk

A Fourier transform formula for the correlation function reads

(m2−Δ𝜀)−1(x,y)=
1

Md �
k∈((ℤ/M)∩[−𝜀−1,𝜀−1))d

e ik⋅(x−y)

(m2+∑i (2𝜀−1sin(𝜋𝜀ki))2)
, x,y∈Λ𝜀,M

So 𝜑𝜀,M is an approximation of the GFF 𝜑. We denote 𝜇𝜀,M its law, note that it is a law onℝΛ𝜀,M
which is a finite dimensional space. By abuse of notation I will also consider it as a measure on
ℝΛ𝜀 by periodic extension.

Both our discrete versions of translation invariance and RP will converge nicely to their con-
tinuum counterpart. Finally

� Define the measure 𝜈𝜀,M onℝΛ𝜀,M (or by extension onℝΛ𝜀)

𝜈𝜀,M(𝜑)= 1
Z𝜀,M

exp((((((((((((((−𝜀
d �
x∈Λ𝜀,M

V(𝜑(x))))))))))))))))𝜇
𝜀,M(d𝜑) (1)

for some V :ℝ→ℝ bounded below.

Exercise. Prove that if V (𝜑)=𝛽𝜑2 and 𝛽>−m2 then we get another GFF with a different mass.

This approximation now is elementary and it has the advantage that it preserves discrete transla-
tion invariance wrt. the latticeΛ𝜀 and moreover a discrete and periodic version of RP.

Reference for discrete RP: S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A
Concrete Mathematical Introduction (Cambridge, United Kingdom; New York, NY: Cambridge
University Press, 2017).

�Both our discrete versions of translation invariance and RP will converge nicely to their con-
tinuum counterpart as 𝜀→0 (to get rid of discreteness) and M→∞ (to get rid of periodicity).

The rest of the lectures will concern the analysis of these measures in order to prove the existence
of the limits above.

What is a proper choice of V? Any V (non-quadratic) is ok, as soon as it works. The problem
is that not so many choices are available. In d =1 one could take any V ∈C(ℝ,ℝ+) (or even
unbounded with some conditions). In d = 2 one can take polynomial functions, exponential,
trigonometric functions. In d=3 we know only how to take V a fourth order polynomial bounded
below, in this case we say we are looking at Φ34.

Definition 1. A Φ34 measure is any non-Gaussian, Euclidean invariant and RP accumulation
point of the family (𝜈𝜀,M)𝜀,M as 𝜀→0 and M→∞ where one can take as V any 4-th order
polynomial, bounded below and with 𝜀,M dependent coefficient.

One of the big successes of constructive EQFT in '70,'80 is the proof that this limits exists and has
many nice properties. It was proven by Glimm, Jaffe, Feldman, Osterwalder, Seneor, . . .
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For 𝜀 fixed and M→∞ this is a problem of statistical mechanics: the infinite volume limit of a
system of unbounded spins with nearest neighbor interaction.

As I said at the beginning a stochastic quantisation (in these lectures) of a given measure 𝜌 is a
map F𝜌 which sends a Gaussian r.v. to a r.v. with law 𝜌.

Even in the case 𝜈𝜀,M there are many interesting ways to do this.

1. Langevin dynamics / parabolic SQ : the Gaussian process W is a family of Brownian motions
and the map 𝜈∼F𝜈(W)=𝜙(0) is given by the stationary solution

𝜙:ℝ×Λ𝜀,M→ℝ,

of the SDE

d𝜙(t,x)={[(−m2+Δ𝜀)𝜙(t)](x)−V ′(𝜙(t,x))}dt+dW(t,x), x∈Λ𝜀,M, t∈ℝ

with V ′ the derivative of V . Here t∈ℝ is a fictious time (it is not the Euclidean time!!!)

2. Elliptic SQ: 𝜈 ∼ F𝜈(𝜉) = (𝜙(0, x))x∈Λ𝜀,M but now 𝜙:ℝ2 ×Λ𝜀,M→ℝ is the solution to the
elliptic PDE

(m2−Δℝ2−ΔΛ𝜀,M)𝜙(z,x)+V ′(𝜙(z,x))=𝜉(z,x), x∈Λ𝜀,M, z∈ℝ2

where 𝜉 is a space-time white noise.

3. Canonical SQ: the Gaussian process W is a family of Brownian motions and the map 𝜈∼
F𝜈(W)=𝜙(0) is given by the stationary solution

𝜙:ℝ×Λ𝜀,M→ℝ

of the SDE (discrete wave equation)

∂t
2𝜙(t,x)=−𝛾∂t𝜙(t,x)+[(−m2+Δ𝜀)𝜙(t)](x)−V ′(𝜙(t,x))+∂tW(t,x)

(approximatively). Without noise this is an Hamiltonian equation.

4. Variational representation (see Barashkov/G.)

5. There is even another possible approach which require to consider a stochastic evolution in
the Euclidean time and it looks like

∂x0𝜙={−(m2−Δ𝜀)1/2𝜙−V ′(𝜙)}dt+∂x0W , x∈ℝ×Λ𝜀,Md−1 .

In this case we cannot discretize the Euclidean time and also the measure 𝜈𝜀,M has to be
taken slightly differently. This is essentially the Markovian point of view wrt. the EQFT
we introduced in the first part of the course, where we perturb the OU process 𝜙 with a drift
−V ′(𝜙).

Remark. While the measure 𝜈𝜀,M is defined via a density wrt. to a Gaussian the goal of SQ is to
define it as the push-forward of a Gaussian measure. In infinite dimensions it seems that push-
forwards are more robust.
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Example. Let (Bt)t⩾0 a one dim BM and let Xt=Bt+ t. Then while there is no problem to see
the law of X as push-forward of that of B, they are not absolutely continuous as measures on
C(ℝ⩾0;ℝ).

Exercise. Prove it.

Historical note. Stochastic quantisation was introduced Nelson, Parisi & Wu. Rigorous con-
struction of EQFT with stochastic quantisation was done in d=1 by Jona–Lasinio and Faris ('80),
Jona–Lasinio and Mitter (~'84) in d=2 bounded volume and then Mitter et al. in infinite volume,
this was done using probabilistic tools (martingale problems and Girsanov's formula). For P(Φ)2
(polynomial interaction in d=2) another approach was introduced by Da Prato and Debussche.
Only in 2013 Hairer managed to prove a local existence and uniqueness result for the parabolic
SQ of Φ34 using regularity structures. And the we had many more results . . . still many problems
remain open.

References

For more details on the history of EQFT and SQ and a broad list of reference s look at the introductions of these
papers:

• M. Gubinelli and M. Hofmanova, `A PDE Construction of the Euclidean Φ34 Quantum Field Theory',
ArXiv:1810.01700 [Math-Ph], 3 October 2018, http://arxiv.org/abs/1810.01700.

• S. Albeverio, F. C. De Vecchi, and Massimiliano Gubinelli, `Elliptic Stochastic Quantization', Annals of
Probability 48, no. 4 (July 2020): 1693–1741, https://doi.org/10.1214/19-AOP1404.

• S. Albeverio et al., `Grassmannian Stochastic Analysis and the Stochastic Quantization of Euclidean Fermions',
ArXiv:2004.09637 [Math-Ph], 25 May 2020, http://arxiv.org/abs/2004.09637.

Hyperbolic SQ and the variational method are discussed here:

• M. Gubinelli, H. Koch, and T. Oh, `Renormalization of the Two-Dimensional Stochastic Nonlinear Wave
Equations', Transactions of the American Mathematical Society, 2018, 1, https://doi.org/10.1090/tran/7452.

• N. Barashkov and M. Gubinelli, `A Variational Method for Φ34 ', Duke Mathematical Journal 169, no. 17
(November 2020): 3339–3415, https://doi.org/10.1215/00127094-2020-0029.

A broad literature on stochastic quantisation from the physicist point of view:

• Poul Henrik Damgaard and Helmuth Hüffel, Stochastic Quantization (World Scientific, 1988).

For an alternative approach to the infinite volume and infinite time limit of the dynamics:

• J. Dimock, `A Cluster Expansion for Stochastic Lattice Fields', Journal of Statistical Physics 58, no. 5 (1
March 1990): 1181–1207, https://doi.org/10.1007/BF01026571.

For a broad discussion of early applications of stochastic calculus in stochastic quantisation:

• Lorenzo Bertini, Giovanni Jona-Lasinio, and Claudio Parrinello, `Stochastic Quantization, Stochastic Cal-
culus and Path Integrals: Selected Topics', Progress of Theoretical Physics Supplement 111 (1 January 1993):
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Remark. An interesting recent talk of A. Jaffe “Is relativity compatible with quantum
theory?”(December 2020)
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https://www.youtube.com/watch?v=RgQixyA2Gcs

It discusses the history and challenges in a mathematical theory of quantum fields.

2 Langevin dynamics

We start by constructing the parabolic stochastic quantization of the measure 𝜈𝜀,M for fixed 𝜀,M.
Since in this section these parameters do not play any role we will avoid to write the whenever it
does not lead to ambiguities. In particular hereΛwill denote the finite setΛ𝜀,M andΔ the discrete
Laplacian and take 𝜀=1 sometimes.

The law 𝜇𝜀,M is Gaussian, we can therefore introduce a fictious time t ∈ℝ (this is !not! the
physical time) and a stationary OU process (Xt

𝜀,M)t⩾0 such that Xt
𝜀,M∼𝜇𝜀,M. There is not a unique

choice, however it is not difficult to guess that a suitable dynamics is given by

dXt
𝜀,M=(Δ𝜀−m2)Xt

𝜀,Mdt+21/2dBt
𝜀,M, (2)

where (Bt
𝜀,M(x))x∈Λ𝜀,M is a family of independent standard Brownian motions.

Exercise. Check the invariance of 𝜇𝜀,M under this dynamics, in particular pay attention to the normalization.

I want to construct now a dynamics which leave invariant the measure 𝜈𝜀,M instead. Let us guess
what this dynamics should be: we write something similar as what we had before but with an
unknown vector-field F(t)

dXt=AXtdt+F(t)dt+21/2dBt.

with A=(Δ−m2). Then if we denote ℙ the law of the solution X of this equation with X0∼𝜇𝜀,M

and independent B, we want to have

�
ℝΛ

f (𝜑)𝜈(d𝜑)=�
ℝΛ

f (𝜑)e
−U(𝜑)

Z 𝜇(d𝜑)= 1Z𝔼[ f (X0)e
−U(X0)]= 1Z𝔼[ f (Xt)e−U(X0)],

for all test functions f and all t⩾0 with

U(𝜑)=𝜀d �
x∈Λ𝜀,M

V(𝜑(x)), U:ℝΛ𝜀,M→ℝ.

Note that under the measure ℙU defined as

ℙU(dX)= e−U(X0)

Z ℙ(dX),

the process X is still solution to the equation and X0∼𝜈𝜀,M.
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� By Girsanov's formula, we have, for two test functions f ,g

𝔼[ f (Xt)e−U(X0)g(X0)]=𝔼ℚ� f (Xt)e∫0
tF(s)21/2dWs−∫0

t|F(s)|2ds−U(X0)g(X0)� (3)

where underℚ the process X satisfy the linear SDE

dXt= AXtdt+21/2dWt

where W is a BM underℚ. Note that X0∼𝜇. So underℚ X is an stationary OU process.

� Note that Ito formula gives

U(Xt)=U(X0)+�0
t
DU(Xs)dXs+�0

t
D2U(Xs)ds

=U(X0)+�0
t
DU(Xs)21/2dWs+�0

t
(D2U(Xs)+DU(Xs)AXs)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

≔Q(Xs)

ds

so we can rewrite (3) as

=𝔼ℚ� f (Xt)g(X0)e
−12U(Xt)− 12U(X0)+

1
2∫0

t(Q(Xs)ds−|F(s)|2)ds e∫0
tF(s)21/2dWs+ 12∫0

tDU(Xs)21/2dWs�

and then take F(s)=−12DU(Xs) to cancel the stochastic integral in the exponent to get

𝔼[ f (Xt)e−U(X0)g(X0)]=𝔼ℚ� f (Xt)g(X0)e
−12U(Xt)− 12U(X0)+

1
2∫0

t�Q(Xs)ds− 14 |DU(Xs)|2�ds�

and since ℚ is time reflection invariant (because under ℚ the process X is just a stationary OU
process) we can rewrite this as

=𝔼ℚ� f (X0)g(Xt)e
−12U(Xt)− 12U(X0)+

1
2∫0

t�Q(Xs)ds− 14 |DU(Xs)|2�ds�

where we exchanged the two functions. Taking f =1 we have

𝔼ℚ�g(Xt)e
−12U(Xt)− 12U(X0)+

1
2∫0

t�Q(Xs)ds− 14 |DU(Xs)|2�ds�=𝔼[e−U(X0)g(X0)]

and on the other hand, taking g=1 we have (taking g= f in the previous formula)

𝔼[ f (Xt)e−U(X0)]=𝔼ℚ� f (Xt)e
−12U(Xt)− 12U(X0)+

1
2∫0

t�Q(Xs)ds− 14 |DU(Xs)|2�ds�=𝔼[e−U(X0) f (X0)]

that is what we were looking for.

Remark. All this is ok provided we can perform all these computations. The only problems are
related to the integrability of the exponential function involving the time integral. For example if
we require that U is bounded below and moreover that

H(𝜑)= 12 Q(𝜑)− 18|∇U(𝜑)|2=D2U(𝜑)+DU(𝜑)⋅ A𝜑− |DU(𝜑)|2
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satisfies

𝔼ℚ�e∫0
tH(Xs)ds�<∞,

for some t>0. Indeed it is enough to establish invariance for small time and the for all times.

�We learned that the solution to

dXt=AXtdt − 12DU(Xt)dt+21/2dBt (4)

leaves the measure 𝜈(d𝜑)=Z −1e−U(𝜑)𝜇(d𝜑) invariant provided U is nice enough.

We will take this equation as stochastic quantization.

Exercise. Note that the process X is time-reversal invariant (we essentially gave a proof of this above, you can fill
in the details).

We would actually like to have U which are unbounded, but bounded below, the relevant example
in these lectures being

U(𝜑)=𝜀d�
x
�𝜆4 𝜑(x)

4+ 𝛽2 𝜑(x)
2�

for some 𝜆>0 and 𝛽∈ℝ.

We have two order of problems with such potentials. First

DxU(𝜑)=
∂

∂𝜑(x) U(𝜑)=𝜆𝜑(x)3+𝛽𝜑(x)

is not globally Lipschitz and the solutions to the SDE (4) could explode in finite time.

Then we still have to worry about invariance (i.e. fixing the details of the argument above) of the
measure 𝜈 on this dynamics.

The second problem is merely technical and could be handled via a careful control of approxima-
tions with nice U and the above invariance argument. The first problem seems more worrisome
but the key is to exploit the coercivity of the dynamics.

First method: one could use the invariance of the measure 𝜈 to conclude that solutions of the SDE
do not explode, we will not do it here.

Second method: A direct approach is to test the equation with Xt, i.e. write

1
2d�

x
|Xt(x)|2=�

x
Xt(x)dXt(x)+�

x
dt

=�
x
[Xt(x)(AXt)(x)−Xt(x)DxU(Xt)]dt+21/2�

x
Xt(x)dBt(x)+�

x
dt

=−G(Xt)dt+𝛽�
x

Xt(x)2dt+21/2�
x

Xt(x)dBt(x)+�
x
dt

7



with in the polynomial case (summing by parts the Laplacian)

G(𝜑)=�
x
(|∇𝜀𝜑(x)|2+m2𝜑(x)2+𝜆𝜑(x)4)⩾0.

By taking averages we could get some interesting estimates, for example

𝔼�
x
|Xt(x)|2+�0

t
G(Xs)ds=𝔼𝛽�0

t
�

x
Xs(x)2ds+�

x
dt,

where now the r.h.s. can be controlled via the l.h.s. or via Gronwall lemma. But this is not robust
enough for what is going on next week.

Third and last method: a more elementary and useful in the following approach which do not rely
on Ito's formula goes as follows (this essentially what is called the Da Prato–Debussche trick).

First one write X=Y +Z where Y is the solution to the linear equation

dYt=AYtdt+21/2dBt,

that is an OU process, and Z is what remains. Then Z must solve

dZt
dt =�AZt −

1
2∇U(Yt+Zt)� (5)

which is an ODE with random coefficients, not a stochastic differential equation anymore since
the effect of the Brownian perturbation is completely taken into account by Y .

We can now test this equation with Z (without the need of Ito's formula) and obtain

d
dt�

x
|Zt(x)|2+G(Zt)=�

x
𝜆(Yt(x)3Zt(x)+3Yt(x)2Zt(x)2+3Yt(x)Zt(x)3)

+𝛽�
x
(Zt(x)Yt(x)+Zt(x)2)

where

G(𝜑)=‖∇𝜑‖L2
2 +m2‖𝜑‖L2

2 +𝜆‖𝜑‖L4
4 ,

with the natural Lebesgue spaces onΛ=Λ𝜀,M (with counting measure).

The key property being that in the r.h.s. we have all terms which we can bound via Hölder
inequality as

d
dt�

x
|Zt(x)|2+G(Zt)⩽C𝛿‖Yt‖L4

4 +𝛿G(Zt),

for 𝛿>0 small as we wish, e.g. 𝛿=1/2. We conclude that

‖Zt‖L2
2 + 12 �0

t
G(Zs)ds⩽‖Z0‖L2

2 +C�
0

t
‖Ys‖L4

4 ds. (6)

This bound implies that solutions cannot explode and we have an explicit bound on its growth in
term of Y and Z0.
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Of the two we know very well Y (it is the OU process, it is Gaussian, I know everything I want
on it). On the other hand I do not know so well

Z0=X0−Y0∼“𝜈−𝜇”

because we do not really know very well 𝜈 (which is actually the object we want to study). For
example we do not know estimates uniform in 𝜀,M.

Note that even if X is stationary and Y is stationary (because we take X0∼ 𝜈 and Y0∼𝜇 and
independent). But they are not independent and more importantly Z is not stationary.

One would like to prove that there exists a coupling of X0 and Y0 (i.e. find a joint law with mar-
ginals 𝜈 and 𝜇 respectively) so that the process (X,Y) is stationary (as a pair) from which would
follow that Z is stationary.

In any case what we have so far is that for any f and any t we have

� f (𝜑)𝜈(d𝜙)=𝔼[ f (Xt)]=
1
t �0

t
𝔼[ f (Xs)]ds==

1
t �0

t
𝔼[ f (Ys+Zs)]ds

using stationarity. This is the stochastic quantization equation. Estimates on X are given via Y
and Z .

Let's construct a stationary coupling of Y and Z . One uses the Krylov-Bogoliubov argument. We
can construct a measure 𝛾T on a pair of fields (𝜑,𝜓)∈ℝΛ×ℝΛ by the formula

� f (𝜑,𝜓)d𝛾T(𝜑,𝜓)≔
1
T �0

T
𝔼[ f (Ys,Zs)]ds,

for any bounded function f of the pair (𝜑,𝜓)∈ℝΛ×ℝΛ where Y ,Z are started as above.

We have that

� [G(𝜓)+‖𝜑‖L4
4 ]d𝛾T(𝜑,𝜓)=

1
T�0

T
𝔼[G(Zs)+‖Ys‖L4

4 ]ds⩽ 2T�𝔼‖Z0‖L2
2 +C′�

0

T
𝔼‖Ys‖L4

4 ds�,

⩽�2T𝔼‖Z0‖L2
2 �+2C′𝔼‖Y0‖L4

4 ,

which is uniformly bounded in T . This implies that the family (𝛾T)T is tight onℝΛ×ℝΛ and one
can extract a weakly convergent subsequence to a limit 𝛾. Note also that

� f (𝜑+𝜓)d𝛾T(𝜑,𝜓)=
1
T �0

T
𝔼[ f (Ys+Zs)]ds=

1
T �0

T
𝔼[ f (Xs)]ds=𝔼[ f (X0)].

Therefore the law of 𝜑+𝜓 under 𝛾T is always given by 𝜈 for any T . As a consequence the law
of 𝜑+𝜓 under 𝛾 is 𝜈.

The measure 𝛾 is stationary under the joint dynamics of (Z ,Y), i.e. if (Z0,Y0)∼𝛾 then (Zt,Yt)∼𝛾.

Exercise. Prove it. Also try to understand if the dynamics of the pair is time-symmetric.

In this way one can construct a stationary coupling of (Z ,Y) which gives a useful representation
of the stationary process X.
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3 Infinite volume limit
What happens when we want to take the limit M→∞? The estimate (6) is not good enough
because both ‖Z0‖L2(Λ𝜀,M) and ‖Ys‖L4(Λ𝜀,M) cannot remain finite since both random field are sta-
tionary and one expects that

‖Z0‖L2(Λ𝜀,M)∼Md, ‖Ys‖L4(Λ𝜀,M)∼Md.

In this section we explicit the dependence on M and use Λ𝜀 for the full lattice. Moreover we
extend any periodic field to the full lattice periodically. (we fix an origin)

However we can modify our apriori estimate introducing a polynomial weight 𝜌:Λ=(𝜀ℤ)d→ℝ

𝜌(x)=(1+ ℓ |x|)−𝜎

with ℓ ,𝜎>0 large enough, where |x| is the distance from the origin of Λ=Λ𝜀.

Now we test the equation for Z with 𝜌2Z summing over the full latticeΛ and we get

1
2
d
dt �

x∈Λ𝜀

|𝜌(x)Zt(x)|2+G(Zt)⩽−𝜆 �
x∈Λ𝜀

𝜌(x)(Yt(x)3Zt(x)+3Yt(x)2Zt(x)2+3Yt(x)Zt(x)3)

+𝛽 �
x∈Λ𝜀

𝜌(x)(Zt(x)Yt(x)+Zt(x)2)+C𝜌 �
x∈Λ𝜀

𝜌(x)Zt(x)2

where C𝜌 (and the inequality) is term coming from the integration by parts which can be made
small by choosing ℓ small and where

G(𝜑)=‖𝜌∇𝜑‖L2(Λ𝜀)
2 +m2‖𝜌𝜑‖L2(Λ𝜀)

2 +𝜆‖𝜌1/2𝜑‖L4(Λ𝜀)
4 .

And using similar estimates as above we obtain the apriori weighted estimates:

d
dt‖𝜌Zt‖L2(Λ𝜀)

2 +G(Zt)⩽C𝛿‖𝜌1/2Yt‖L4(Λ𝜀)
4 +𝛿G(Zt)

indeed

𝜆|||||||||||||||�x∈Λ𝜀 𝜌(x)Yt(x)3Zt(x)|||||||||||||||⩽𝜆|||||||||||||||�x∈Λ𝜀 (𝜌(x)
3/2Yt(x)3)(𝜌(x)1/2Zt(x))|||||||||||||||

⩽𝜆 C
𝛿‖𝜌

1/2Yt‖L4
4 +𝛿𝜆‖𝜌1/2Zt‖L4

4 ⩽𝜆 C
𝛿‖𝜌

1/2Yt‖L4
4 +𝛿G(Zt)

for any small 𝛿>0.

As a consequence one get the estimate

‖𝜌Zt‖L2(Λ)
2 + 12 �0

t
G(Zs)ds⩽‖𝜌Z0‖L2(Λ)

2 +C�
0

t
‖𝜌1/2Ys‖L4(Λ)

4 ds. (7)

We have seen that we can construct a stationary coupling of (Y , Z), so we can use there this
stationary coupling and take the average of this inequality to get

𝔼‖𝜌Zt‖L2(Λ)
2 + 12 �0

t
𝔼G(Zs)ds⩽𝔼‖𝜌Z0‖L2(Λ)

2 +C�
0

t
𝔼‖𝜌1/2Ys‖L4(Λ)

4 ds
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but by stationarity we also have 𝔼‖𝜌Zt‖L2(Λ)
2 =𝔼‖𝜌Z0‖L2(Λ)

2 so the initial condition disappear!!!
So

1
2 �0

t
𝔼G(Zs)ds⩽C�

0

t
𝔼‖𝜌1/2Ys‖L4(Λ)

4 ds

and again by stationarity one get

𝔼G(Z0)⩽2C𝔼‖𝜌1/2Y0‖L4(Λ)
4 .

Which give us very good apriori estimates on the law of Z0 which are independent of M, indeed

𝔼‖𝜌1/2Y0‖L4(Λ)
4 =𝔼 �

x∈Λ𝜀

𝜌(x)2|Y0(x)|4= �
x∈Λ𝜀

𝜌(x)2𝔼|Y0(x)|4=C �
x∈Λ𝜀

𝜌(x)2<∞

uniformly in M provided 𝜎>d and the law of Y0(x) is translation invariant so does not depend on
x and actually one can easily show that

(𝔼|Y0(x)|4)1/2⩽C𝔼|Y0(x)|2

≲(m2−Δ)−1(x,x)≲ 1
Md �

k∈((ℤ/M)∩[−𝜀−1,𝜀−1))d

1
(m2+∑i (2𝜀−1 sin(𝜋𝜀ki))2)

→�
[−𝜀−1,𝜀−1)d

1
(m2+∑i (2𝜀−1sin(𝜋𝜀ki))2)

<+∞

uniformly in M.

Lemma 2. For any M>0 we have that 𝜈M∼X0M∼Y0M+Z0M where Y0M∼𝜇M and Z0M is a r.v. such
that

sup
M
�
ℝΛ

G(𝜑)𝜈M(d𝜑)=sup
M
𝔼G(Z0M)<∞.

This is a key estimate to take the infinite volume limit since it allows to use tightness on the family
(𝜈M)M onℝΛ in the topology of local convergence.

Remark. Integration by parts with a weight was treated a bit sloppily above. Let us make these
considerations more precise: we have

𝜀∇𝜀i( fg)(x)= f (x+𝜀ei)g(x+𝜀ei)− f (x)g(x)=(∇𝜀if (x)+ f (x))g(x+𝜀ei)− f (x)g(x)

=∇𝜀if (x)g(x+𝜀ei)+ f (x)∇𝜀ig(x)

so

−�
x
𝜌2Z ΔZ =�

x
�

i
∇i(𝜌2Z)∇iZ =�

x
�

i
𝜌2|∇iZ |2+�

x
�

i
∇i(𝜌2)Z(⋅+𝜀ei)∇iZ

=�
x
�

i
𝜌2|∇iZ |2+�

x
�

i
∇i(𝜌2)Z(⋅+𝜀ei)∇iZ

(8)
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and the second term can be bounded by

��
x
�

i
∇i(𝜌2)Z(⋅+𝜀ei)∇iZ �⩽C‖∇i(𝜌2)𝜌−2‖L∞‖∇Z‖L2‖Z‖L2⩽C𝜌‖∇Z‖L2

2 +C𝜌‖Z‖L2
2

with C𝜌=C′‖∇i(𝜌2)𝜌−2‖L∞. Note that this constant can be made as small as we want (uniformly
in 𝜀,M) by taking ℓ small, indeed this is essentially a discrete version of the fact that in the
continuum (𝜀→0) one has

|∇(𝜌2)𝜌−2|= |𝜌−1∇𝜌|=(1+ℓ |x|)−1ℓ ≲ ℓ .

This argument shows however that one has to be careful with weights which are compactly sup-
ported since the term 𝜌−1∇𝜌 is then more tricky to estimate. For example, in one dimension if
one has a function 𝜌(t)≈ t𝛼 with goes to zero as t→0 then

𝜌−1∇𝜌∝ t−𝛼 t𝛼−1∝ t−1

so the above L∞ estimate is not true anymore. For our purpose here polynomial weights are
enough.

More estimates can be obtained by testing with other functions. For example, testing (5) with
𝜌(𝜌Z)p−1 one gets

1
p∂t�

Λ
(𝜌Zt)p+�

Λ
m2(𝜌Zt)p+𝜌(𝜌Zt)p−1ΔZt+𝜆(𝜌p/(p+2)Zt)p+2

=−𝜆�
Λ
𝜌(𝜌Zt)p−1[(Yt+Zt)3−Zt

3]

and by proceeding as above one obtains uniform weighted Lp(Λ) estimates for 𝜈M.

Remark 3. It is also possible to obtain weighted L∞ estimates.

These weighted estimates are uniform in M and allow to prove tightness of the family (𝜈𝜀,M)M
for fixed 𝜀>0 and M→∞, in the topology of local convergence (i.e. convergence by testing with
continuous functions on ℝΛ𝜀 which depends only of finitely many points of Λ𝜀). In particular
we understood that the local (or weighted) Lp(Λ𝜀) norms of 𝜑:ℝΛ𝜀→ℝ under the measure 𝜈𝜀,M

have finite moments:

sup
M
� ‖𝜌𝜑‖Lp

p 𝜈𝜀,M(d𝜑)<∞

for any p>1. Actually by working a bit harder one can prove uniform integrability of functions
like exp(‖𝜌𝜑‖L2).

4 Convergence to equilibrium
At this point we want also to probe the behavior of the dynamics for long times and also large
distances.
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The appropriate way to look at this problem is to imagine that we have two solutions Z 1 and Z 2

both driven by two OU processes Y 1,Y 2 and with arbitrary initial conditions Z01,Z02.

We will fix later the specific ways we choose these data, according to the property of the measures
we would like to establish.

For the moment the only thing we care about is that their difference H=Z 1−Z 2 solves the equa-
tion

∂tH − AH=−12[U′(X
1)−U′(X1+H+K)] ≔Q

with K≔Y 1−Y 2 and X1=Y 1+Z 1 as usual.

The r.h.s. can be Taylor-expanded as

Q=−12 �0
1
d𝜏U′′(X1+𝜏(H+K))(H+K).

Note that for our usual expression of U we have

Ux′′(𝜑)=(4 ⋅3)𝜆𝜑2+2𝛽.

However we will not need here this specific expression. We can deal with a more general situa-
tion.

We need however to concentrate on estimates which are good when H,K≪1, since we want to
show that the two solutions are near when the difference in the data, i.e. in K and H0 is small.

We will make there the key hypothesis that

U′′(𝜑)⩾−2𝜒

for some constant 𝜒∈ℝ.

This a convexity assumption since it implies that 𝜑↦U(𝜑)+ 2𝜒∑Λ 𝜑
2 is convex. (I'm a bit

sloppy here about the precise meaning of the derivatives, but we are dealing with local func-
tionals, so I leave to you to fill out the details)

We also let

G≔ 12 �0
1
d𝜏U′′(X1+𝜏(H+K))⩾−𝜒.

We test the equation with 𝜌2H for some weight 𝜌. The r.h.s. can be bounded by (𝛿 is small)

�
Λ
𝜌2HQ=�

Λ
𝜌2GKH −�

Λ
𝜌2GH2

⩽C𝛿‖𝜌GK‖L2
2 +𝛿‖𝜌H‖L2

2 −�
Λ
𝜌2GH2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

⩾𝜒‖𝜌H‖L2
2

⩽C𝛿 ‖𝜌GK‖L2
2 +(𝜒+𝛿)‖𝜌H‖L2

2
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So we have now, taking any 𝛿⩽𝜒,

1
2∂t‖𝜌H‖L2

2 +�
Λ
𝜌2H (m2−Δ)H⩽C ‖𝜌GK‖L2

2 +2𝜒‖𝜌H‖L2
2

Consider furthermore F(t)=ect‖𝜌H‖L2
2 , then

1
2∂t(ect‖𝜌H‖L2

2 )= c
2(e

ct‖𝜌H‖L2
2 )+ ect

2 ∂t‖𝜌H‖L2
2

⩽−ect�
Λ
𝜌2H �m2−2𝜒− c

2 −Δ�H+ect C ‖𝜌GK‖L2
2 .

Let

Q̃(t)≔C ‖𝜌G(t)K(t)‖L2
2 .

Choose a different kind of weight here, exponential, in the form

𝜌(x)= e−𝜃|x|,

then for 𝜀𝜃⩽1 we have

|∇i(𝜌2)|= �e
−𝜃|x+𝜀ei|− e−𝜃|x|

𝜀 �⩽ e𝜀𝜃−1
𝜀 e−𝜃|x|⩽2𝜃e−𝜃|x|

and using (8) we get

�
Λ
𝜌2H (−Δ)H⩾�

Λ
�

i
𝜌2|∇iH|2−�

Λ
�

i
4𝜃𝜌2|H(⋅+𝜀ei)||∇iH|

⩾�
Λ
�

i
𝜌2|∇iH|2−C𝜃2�

Λ
𝜌2|H|2− 12�

Λ
�

i
𝜌2|∇iH|2

⩾12�
Λ
�

i
𝜌2|∇iH|2−C𝜃2�

Λ
𝜌2|H|2.

Putting all together this gives

1
2∂t(ect‖𝜌H‖L2

2 )+ect�m2−2𝜒− c
2 −C𝜃2��

Λ
𝜌2H2+ect 1

2�
Λ
�

i
𝜌2|∇iH|2

⩽12∂t(ect‖𝜌H‖L2
2 )+ect�

Λ
𝜌2H �m2− c

2 −2𝜒�H+ ect�
Λ
𝜌2H (−Δ)H⩽ect Q̃(t).

Assuming that

m2−2𝜒− c
2 −C𝜃2⩾0

we have

1
2∂t(ect‖𝜌H‖L2

2 )⩽ect Q̃(t).
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Integrating this we conclude

ect

2 ‖𝜌Ht‖L2
2 ⩽�12‖𝜌H0‖L2

2 +�
0

t
ecs Q̃(s)ds�

that is

‖𝜌Ht‖L2
2 ⩽e−ct‖𝜌H0‖L2

2 +2�
0

t
e−c(t−s) Q̃(s)ds

where

Q̃(s)=C ‖𝜌Gs Ks‖L2
2 =C�

0

1
d𝜏‖𝜌2U′′(Xs

1+𝜏(Hs+Ks))2Ks
2‖L1(Λ)

For example, taking averages of this source term we can estimate it as

𝔼[Q̃(s)]⩽ �
x∈Λ

�
0

1
d𝜏𝜌2(x)�𝔼�Ux′′(Xs

1+𝜏(Hs+Ks))4��
1/2
�𝔼Ks

4(x)�1/2

From our estimates above for Z 1,Z 2,Y 1,Y 2 is not difficult to deduce that

𝔼�Ux′′(Xs
1+𝜏(Hs+Ks))4�⩽C

uniformly in M for any polynomial U′′. When K is stationary in time we have the simpler expres-
sion

𝔼[Q̃(s)]≲ �
x∈Λ

𝜌2(x)(𝔼Ks
4(x))1/2≲�

x∈Λ
𝜌2(x)(𝔼K04(x))1/2.

We summarize these computation as

Lemma. Uniformly in M and provided m2−2𝜒− c
2 −C𝜃2⩾0 and K is stationary in time we have

‖𝜌Ht‖L2
2 ⩽e−ct‖𝜌H0‖L2

2 +C �
x∈Λ

𝜌2(x)(𝔼K04(x))1/2.

Remark. This estimate shows that as t→∞ and provided

�
x∈Λ

𝜌2(x)(𝔼K04(x))1/2→0 (9)

we have

‖𝜌Ht‖L2
2 →0.

Lemma 4 can be used in two different ways: by coupling two different invariant measures via a
common dynamics one can show that the two measures are equal. This gives uniqueness. On can
use noises which coincide in a bounded region to drive two different dynamics, e.g. started from
the same invariant measure. Then one obtains that the quantity (9) can be made small choosing a
large region, which shows that one has a certain decay of correlations, i.e. what happens outside
a given region does not influence much the dynamics.
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5 The small scale limit and renormalization (d =2)

In this section we address the 𝜀→0 limit at M fixed (let's say M=1). This is the ultraviolet limit
(UV limit). Obtain uniform estimates in this limit is more difficult are requires new ideas. There
are various possible approaches: regularity structures (Hairer), renormalization group ideas (Kupi-
ainen), or paracontrolled distributions (GIP, Catellier & Chouk). I will follow this last strategy.
The main reference for us here is the paper I mentioned by Hofmanova & myself:

M. Gubinelli and M. Hofmanova, `A PDE Construction of the Euclidean
Φ34 Quantum Field Theory', ArXiv:1810.01700 [Math-Ph], 3 October 2018,
http://arxiv.org/abs/1810.01700.

The main problem is that as 𝜀→0 the process Y becomes a distribution. Recall our context. We
had a dynamics on X which can be decomposed on a linear part

dYt=(Δ𝜀−m2)Ytdt+21/2dBt,

and the non-linear part Z :

∂
∂t Zt=(Δ𝜀−m2)Zt −

1
2 V ′(Yt+Zt), (10)

with V ′(𝜑)=𝜆𝜑3+𝛽𝜑. The computation of V ′(Yt+Zt) is point-wise in space:

V ′(Yt+Zt)(x)=V ′(Yt(x)+Zt(x))=𝜆(Yt(x)+Zt(x))3+𝛽(Yt(x)+Zt(x))

=𝜆Yt(x)3+3𝜆Yt(x)2Zt(x)+3𝜆Yt(x)Zt(x)2+𝜆Zt(x)3+𝛽Yt(x)+𝛽Zt(x).

The main problem is the following: (M=1) as 𝜀→0

𝔼[Yt(x)2]=(m2−Δ𝜀)(x,x)= �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

1
(m2+∑i (2𝜀−1sin(𝜋𝜀ki))2)

≈ �
k∈ℤ∩[−𝜀−1,𝜀−1)d

1
(m2+2𝜋|k|2)

∝{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
𝜀2−d d>2

log(𝜀−1) d=2

Which tells us that the typical size of Yt(x) is 𝜀2−d→∞. The estimates from last week are useless
in this limit, because they depend on Lp(Λ𝜀) norms of Yt.

This is a problem of small scales. It hints to the fact that Y 𝜀 is not converging to a function on
𝕋d≈[0,1]d, not even locally.

For convenience we define 𝕋𝜀d=Λ𝜀,1=(𝜀ℤ∩[−1/2, 1/2))d.
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5.1 Besov spaces

One way to deal with this problem and analyze what is going on in the equation (10) is to split all
our functions in “blocks” which are nice.

This is accomplished via Littlewood–Paley decomposition, i.e. a nice partition of unity in Fourier
space. We split every function f :𝕋𝜀d→ℝ in very nice pieces (Δi f )i⩾−1 as follows

f (x)= �
i⩾−1

(Δi f )(x),

where

Δi f (x)≔ �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−i k) f̂ (k)e2𝜋ik⋅x i⩾0,

and

Δ−1 f (x)≔ �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

𝜒(k) f̂ (k)e2𝜋ik⋅x,

where 𝜌:ℝd→ℝ⩾0 and is such that

𝜒(k)+�
i⩾0
𝜌(2−i k)=1,

for a nice function 𝜒:ℝd→ℝ⩾0 with support in a ball ℬ of radius ≈1 around k =0∈ℝd and
𝜌 is supported on an annulus 𝒜 of radius ≈1. All these functions are smooth (and some other
properties we don't care about right now).

Therefore the Fourier transform of the LP blockΔi f is supported on an annulus of size 2i and that
of Δ−1 f in a ball of radius 1.

Remark. For 𝜀>0 we have Δi f =0 if 2i≳𝜀−1, so we sum over i up to ≈log2𝜀−1. Let us define
N𝜀 to be this bound. So

f = �
i=−1

N𝜀
(Δi f ),

there is a technical subtlety here on how one handles the last last block but we will ignore it.

Now:

𝔼[(Δi Yt(x))2]= �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−i k)2
(m2+∑i (2𝜀−1sin(𝜋𝜀ki))2)

≈ �
k∈2i𝒜⊆(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−i k)2
(m2+|k|2)

≈ �
k∈2i𝒜⊆(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−i k)2
|k|2�
≈(2i)2

≲(2i)d−2

Which says thatΔiYt≈(2i)(d−2)/2which is uniform in 𝜀! (but of course not in i, and i can be large)

One can prove actually that Δi Y 𝜀 converges to a nice C∞ random function on 𝕋d as 𝜀→0.
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This decomposition shift the problem of dealing with distribution to a problem of dealing with
large sums.

Definition 4. Let 𝛼∈ℝ and p,q∈[1,+∞]. We say that f ∈Bp,q
𝛼 (a Besov space) iff

‖ f ‖Bp,q
𝛼 ≔‖i⩾−1↦2i𝛼‖Δi f ‖Lp‖ℓ q=[[[[[[[[[[[[�i

(2i𝛼‖Δi f ‖Lp)q]]]]]]]]]]]]
1/q
<∞.

These are Banach spaces.

In particular we will use𝒞𝛼=B∞,∞𝛼 with norm ‖ f ‖𝒞𝛼 such that

‖Δi f ‖L∞⩽2−𝛼i‖ f ‖𝒞𝛼.

When 𝛼>0 there are spaces of regular functions, when 𝛼<0 these are just distributions (of course
when 𝜀=0).

Moreover note that

‖ f ‖B2,2𝛼
2 = �

i⩾−1
22i𝛼‖Δi f ‖L2(𝕋𝜀d)

2 =𝜀d �
x∈𝕋𝜀d

�
i⩾−1

22i𝛼|Δi f (x)|2≈𝜀d �
x∈𝕋𝜀d

|(1−Δ𝜀)𝛼/2 f |2 ≔‖ f ‖H𝛼2 .

From the estimate above on Y one can prove that almost surely for any t∈ℝ, Yt
𝜀∈𝒞(d−2)/2−𝜅

for any small 𝜅>0 uniformly in 𝜀. One can also prove that as a function of t is continuous and
actually uniformly in 𝜀

Y 𝜀∈C(ℝ;𝒞(d−2)/2−𝜅)

almost surely.

In the following 𝜅 will always denote an arbitrary small positive quantity. (this is a small loss of
regularity due to the fact that we want almost sure statements).

Note that when d=2 we have Y 𝜀∈C(ℝ;𝒞−𝜅) and when d=3 Y 𝜀∈C(ℝ;𝒞−1/2−𝜅).

Take f ∈𝒞𝛼, g∈𝒞𝛽 then

fg=�
i
Δi f �

j
Δj g=�

i, j
Δi fΔj g

to give a sense to this product one has to control the two (large) sums. The good way to do it is
to split it in three pieces:

fg=�
i, j
Δi fΔj g= �

i< j−K
Δi fΔj g+ �

i> j+K
Δi fΔj g+ �

|i− j|≲K
Δi fΔj g

≔( f ≺g)+( f ≻g)+( f ∘g)

and call them the paraproducts ( f ≺g), ( f ≻g)=(g≺ f ) and the resonant term ( f ∘g).

18



Theorem 5. The paraproducts are always well defined and

‖ f ≺g‖𝒞𝛽≲‖ f ‖𝒞𝛼‖g‖𝒞𝛽, 𝛼>0,

‖ f ≺g‖𝒞𝛼+𝛽≲‖ f ‖𝒞𝛼‖g‖𝒞𝛽, 𝛼<0.

The resonant product is well-defined only if 𝛼+𝛽>0 and in this case

‖ f ∘g‖𝒞𝛼+𝛽≲‖ f ‖𝒞𝛼‖g‖𝒞𝛽.

Therefore fg is well defined (and continuous) if 𝛼+𝛽>0 and in this case

‖ fg‖≲ ‖ f ‖𝒞𝛼‖g‖𝒞𝛽.

We are allowed to multiply things only if regularity is ok, and the problem is in the resonant term.

5.2 Renormalization

Let's go back with these tools to our equation (10). In the r.h.s. we have

V ′(Y +Z)=𝜆Y 3+3𝜆Y 2Z +3𝜆YZ 2+𝜆Z 3+𝛽Y +𝛽Z .

By the product theorem we see that Y 3 is problematic since the regularity 𝛼=(2−d)/2−𝜅 of Y
is negative. However Y is explicit, and we can do a probabilistic computation to prove that Y 3

converge as 𝜀→0 to a well defined distribution provided it is renormalized.

Theorem 6. There exists a constant c𝜀 such that the random field (renormalized square)

𝕐t
𝜀,2(x)≔(Yt

𝜀(x))2− c𝜀,

converges (in law) as 𝜀→0 to a random field𝕐2 in C(ℝ;𝒞2𝛼)with 𝛼=(2−d)/2−𝜅<0 (if d⩾2).

Similarly if d=2 the renormalized cube

𝕐t
𝜀,3(x)≔(Yt

𝜀(x))3−3c𝜀Yt
𝜀(x),

converges as 𝜀→0 to a random field in C(ℝ;𝒞3𝛼) while if d=3 then convergence holds C−𝜅(ℝ;
𝒞3𝛼) (where C−𝜅 is a space of distributions in the time variable with negative regularity).

Moreover one can take

c𝜀≔𝔼[(Yt
𝜀(x))2]≈𝜀(2−d).

With this choice the renormalization corresponds to “Wick ordering”.

Now we see that replacing

𝛽=𝛽𝜀=𝛽′−3𝜆c𝜀,

19



on has (with𝕐1=Y)

V ′(Y +Z)=𝜆(Y 3−3c𝜀Y)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝕐3

+3𝜆(Y 2−c𝜀)�
𝕐2

Z +3𝜆YZ 2+𝜆Z 3+𝛽′Y +𝛽′Z

=𝜆𝕐3+3𝜆𝕐2Z +3𝜆𝕐1Z 2+𝜆Z 3+𝛽′𝕐1+𝛽′Z .

Magic: one constant works for both problematic terms... (there are reasons for that, namely sub-
criticality of this model).

Next problems: the products

𝕐2�
𝒞2𝛼

Z , 𝕐1�
𝒞𝛼

Z 2.

Let's try to get some estimates for Z : we test the equation (10) with Z and integrate in space 𝕋𝜀d

1
2
∂
∂t�𝕋𝜀d

Zt
2+�

𝕋𝜀d
�|∇𝜀Zt|2+m2|Zt|2+

𝜆
2 |Zt|4�

=−12 �𝕋𝜀d
[𝜆𝕐3Z +3𝜆𝕐2Z 2+3𝜆𝕐1Z 3+𝛽′𝕐1Z +𝛽′Z 2].

The l.h.s tells me that I have control of the L2,L4 norm of Z but also of the H1 norm of Z , this
means we have some regularity for Z .

Note that we define:

�
𝕋𝜀d
dx≔𝜀d �

x∈𝕋𝜀d
.

Also remark that H1=B2,21 . In the Besov scale we have Sobolev spaces. The theory of products
and paraproducts extends naturally to Besov space with indexes p,q other than∞,∞.

When d=2 we have that𝕐k∈𝒞−k𝛼 with k=1,2,3 and 𝛼=−𝜅 a small negative quantity. There-
fore all the products in the a-priori r.h.s. are well defined assuming Z∈H1 (the sums of regularities
is positive!). For example one has estimates like (for some small 𝛿 and some large K)

��
𝕋𝜀d
𝕐3Z �≲ ‖𝕐3‖𝒞3𝛼‖Z‖B1,14𝜅≲C𝛿‖𝕐3‖𝒞3𝛼

K +𝛿‖∇Z‖L2
2 +𝛿‖Z‖L2

2 ,

��
𝕋𝜀d
𝕐2Z 2�≲ ‖𝕐2‖𝒞2𝛼‖Z 2‖B1,13𝜅≲C𝛿‖𝕐2‖𝒞2𝛼

K +𝛿‖∇Z‖L2
2 +𝛿‖Z‖L4

4 ,

��
𝕋𝜀d
𝕐1Z 3� ≲ ‖𝕐1‖𝒞𝛼‖Z 3‖B1,12𝜅≲C𝛿‖𝕐1‖𝒞𝛼K +𝛿‖∇Z‖L2

2 +𝛿‖Z‖L4
4 ,

So overall we can obtain (via PDE methods only, no probability here)

1
2
∂
∂t �𝕋𝜀d

Zt
2+(1−𝛿)�

𝕋𝜀d
�|∇𝜀Zt|2+m2|Zt|2+

𝜆
2 |Zt|4�⩽Q(𝕐t

𝜀),
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where

Q(𝕐t
𝜀)≔1+C �

k=1,2,3
‖𝕐t

k‖𝒞k𝛼
K ,

for some power K. This estimate holds for all paths of Y since note that Y 𝜀∈C�ℝ×ℝ𝕋𝜀
d
;ℝ� so

it is clear that Q(𝕐t
𝜀)<∞.

The real problem is: what happens when 𝜀→0?

Remember that we constructed a stationary coupling ℙ𝜀 such that under ℙ𝜀 the processes Y and
Z are stationary and

X=Y +Z

is also stationary and such that Xt∼𝜈𝜀 (recall M=1 here).

Under this coupling this estimate implies that

1
2
∂
∂t𝔼�𝕋𝜀d

Zt
2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=0 (by stationarity)

+𝔼�
𝕋𝜀d
�|∇𝜀Zt|2+m2|Zt|2+

𝜆
2 |Zt|4�≲𝔼Q(𝕐t

𝜀)=𝔼Q(𝕐0𝜀),

but again, using some probability theory one can prove that

sup
𝜀
𝔼Q(𝕐0𝜀)<∞,

since again Y is well known and estimates are relatively easy. As a result one obtain uniform
estimates of the form

sup
𝜀
𝔼�

𝕋𝜀d
�|∇𝜀Z0|2+m2|Z0|2+

𝜆
2 |Z0|

4�<∞.

This estimate is a key point because from that one can derive tightness of the family (𝜈𝜀)𝜀>0.
Indeed let 𝛾𝜀 the law of (Y0,Z0) under ℙ𝜀, we have

sup
𝜀
�(‖𝜓‖𝒞−𝛼

2 +‖∇𝜁‖L2
2 +‖𝜁‖L2

2 +‖𝜁‖L4
4 )𝛾𝜀(d𝜓×d𝜁)

=sup
𝜀
𝔼ℙ𝜀[‖Y0‖𝒞−𝛼

2 +‖∇Z0‖L2
2 +‖Z0‖L2

2 +‖Z0‖L4
4 ]≲sup

𝜀
𝔼Q(𝕐0𝜀)<∞,

note that ‖Y0‖𝒞−𝛼
2 ≲Q(𝕐0𝜀) if K large enough.

This gives tightness of (𝛾𝜀)𝜀⩾0 in 𝒞−2𝛼× (H1−𝜅∩L4) (some loss of regularity to guarantee the
required compactness). Projecting down to (𝜈𝜀)𝜀 (taking the sum of the two factors) one get
tightness of (𝜈𝜀)𝜀 in H−2𝛼=B2,2−2𝛼:

� ‖𝜑‖B2,2−𝛼2 𝜈𝜀(d𝜑)=� ‖𝜓+𝜁‖B2,2−𝛼2 𝛾𝜀(d𝜓×d𝜁)⩽2� �‖𝜓‖B2,2−𝛼2 +‖𝜁‖B2,2−𝛼2 �𝛾𝜀(d𝜓×d𝜁)

⩽2� (‖𝜓‖𝒞−𝛼
2 +‖𝜁‖H 1

2 )𝛾𝜀(d𝜓×d𝜁),
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which is uniformly bounded in 𝜀. So we can extract an accumulation point 𝜈 (a measure on
H−2𝛼(𝕋2).

Theorem 7. Provided d=2 and we take 𝛽=−3𝜆c𝜀+𝛽′ for some constant 𝛽′∈ℝ and c𝜀=
𝔼[Yt

𝜀(x)2] then the family (𝜈𝜀)𝜀 is tight in H−2𝛼(𝕋2).

6 UV limit in three dimensions
What happens in d = 3. Let us go back to the a-priori estimates: test the equation (10) where
V ′(𝜑)=𝜆𝜑3+𝛽𝜑 (and as in two dimensions we take 𝛽=−3𝜆c𝜀+𝛽′) with Z and integrate in
space 𝕋𝜀3:

1
2
∂
∂t�𝕋𝜀3

Zt
2+�

𝕋𝜀3
�|∇𝜀Zt|2+m2|Zt|2+

𝜆
2 |Zt|4�

=−12 �𝕋𝜀3
[𝜆𝕐3Z +3𝜆𝕐2Z 2+3𝜆𝕐1Z 3+𝛽′𝕐1Z +𝛽′Z 2].

But now𝕐2 has regularity −1−2𝜅 and𝕐3 even worser than −3/2−3𝜅. For Z we can hope only
for H1 regularity from these estimates. Big problem!!

The term𝕐1Z 3,𝕐1Z are still ok because𝕐1 has regularity −1/2−𝜅.

We go back to the equation (10) and write it more explicitly

∂
∂t Zt+(m2−Δ𝜀)Zt=−12 𝜆𝕐

3
�
𝒞−3/2−3𝜅

− 32 𝜆𝕐
2Z + ⋅ ⋅ ⋅

From the theory of parabolic equations one sees that Z cannot have better regularity that 2 +
−3/2−3𝜅=1/2−3𝜅>0 surely it cannot be H1. Moreover in this case we even have a worser
problem for the term𝕐2Z which is a prod. of something of reg. −1−2𝜅 and something of reg.
1/2−3𝜅 which do not sum up to a positive quantity. The first step is to separated the problems
in the product𝕐2Z via a decomposition, we write

𝕐2Z =𝕐2≻Z +𝕐2≼Z ,

where 𝕐2≼Z =𝕐2≺Z +𝕐2 ∘Z . By paraproducts estimates one has that 𝕐2≻Z has regularity
of𝕐2 that is −1−2𝜅 and it is well-defined. The term containing the resonant product𝕐2≼Z is
however not well defined.

Define a new stochastic object𝕐[3],𝜀 to be the solution of the equation

∂
∂t𝕐t

[3],𝜀+(m2−Δ𝜀)𝕐t
[3],𝜀=−12 𝜆𝕐t

3,𝜀,

(for example, take the stationary solution). Again this is a very explicit functional of the Gaussian
process Y 𝜀 and will be easy to analyze, in particular one can show that uniformly in 𝜀 it belongs to

𝕐[3],𝜀∈C(ℝ,𝒞1/2−3𝜅(𝕋3)),
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in the sense that, for example,

sup
𝜀
𝔼[[[[[[[ supt∈[0,T ]

‖𝕐t
[3],𝜀‖𝒞1/2−3𝜅(𝕋3)

K ]]]]]]]<∞,
for any K,T .

Now defineℍ as the solution to

∂
∂tℍt+(m2−Δ𝜀)ℍt=−12 𝜆𝕐t

3− 32 𝜆𝕐t
2≻ℍt, (11)

this is a linear equation which can be easily solved and analyzed and its solutionℍ does not looks
much different than𝕐[3],𝜀 and lives also in C(ℝ,𝒞1/2−3𝜅(𝕋3)).

Define Φ as

Z ≔ℍ+Φ

which solves

∂
∂t Φt =(Δ𝜀−m2)Φt −

𝜆
2 [−3𝜆𝕐

2≻ℍ+3𝕐2≻Z +3𝕐2∘Z +3𝕐2≺Z +3𝕐Z 2+Z 3]

=(Δ𝜀−m2)Φt −
𝜆
2 [[[[[[[[[[[[[[3𝕐

2≻Φ+3𝕐2∘Φ+3𝕐2∘ℍ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
dangerous terms!!!

+3𝕐2≺Z +3𝕐Z 2+Z 3]]]]]]]]]]]]]]
(12)

This is the right equation to get a-priori estimates for (almost since Φ cannot be expected to be in
H1 exactly due to this equation). Let's test it with Φ to get

1
2
∂
∂t�𝕋𝜀3

Φ2+�
𝕋𝜀3
Φ(m2−Δ𝜀)Φ+

𝜆
2 �𝕋𝜀3

Φ4

=�
𝕋𝜀3
Φ�−32 𝜆𝕐

2≻Φ− 32 𝜆𝕐
2∘Φ− 32 𝜆𝕐

2∘ℍ− 12 𝛽′(𝕐
1+Z)�

+�
𝕋𝜀3
Φ�−32 𝜆𝕐

2≺Zt −
3
2 𝜆𝕐

1Z 2�− 𝜆2 �𝕋𝜀3
Φ((ℍ+Φ)3−Φ3)

We have now to cross fingers and check that all the terms in the r.h.s. can be controlled with the
l.h.s.

The term

−𝜆2 �𝕋𝜀3
Φt((ℍt+Φt)3−Φt

3),

is not scary at all sinceℍ is a nice function and it contains only powers less than 4 of Φ so it can
be controlled via the ∫Φ4 is the l.h.s. (like in the infinite vol estimates of last week). The term

−32 𝜆�𝕋𝜀3
Φt𝕐1Zt

2=−32 𝜆�𝕋𝜀3
Φt𝕐1(ℍ+Φt)2
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is also fine since 𝕐1 is only −1/2−𝜅 irregular and we have the H1 norm of Φ and it is at most
cubic inΦ3. With some work one can get a nice estimate. Note however that this term will contain
products

𝕐1ℍ, 𝕐1ℍ2,

which are not well defined becauseℍ is only of regularity 1/2−2𝜅 so the reg. do not sum up to
positive number. However these terms can be analyzed with probabilistic estimates and shown to
be well defined and not needing renormalization. We will assume in the following that they have
uniform estimates as 𝜀→0 in

𝕐1ℍ,𝕐1ℍ2∈C(ℝ;𝒞−1/2−𝜅(𝕋3)).

We are worried about the terms:

−32 𝜆�𝕋𝜀3
Φt[𝕐2≻Φt+𝕐2≼Φt]

since Φ is not regular enough for𝕐2. Here we use the following fact.

Lemma 8. We have

D( f ,g,h)≔�
𝕋𝜀3

f (g≻h)−�
𝕋𝜀3
(g∘ f )h

is well defined and continuous when the sum of the regularities of f ,g,h is positive. For example

|D( f ,g,h)|⩽‖ f ‖H𝛼‖h‖H𝛾‖g‖𝒞𝛽

whenever 𝛼+𝛽+𝛾>0.

Using this lemma we have

�
𝕋𝜀3
Φt[𝕐2≻Φt+𝕐2∘Φt]=�

𝕋𝜀3
Φt[2𝕐2≻Φt]+D(Φt,𝕐t

2,Φt)

We got rid of the resonant product but the term

�
𝕋𝜀3
Φt[2𝕐2≻Φt]

is still dangerous.

Going back to the a-priori estimate we focus on two terms

⋅ ⋅ ⋅ + �
𝕋𝜀3
Φt(m2−Δ𝜀)Φt = −3𝜆�

𝕋𝜀3
Φt[𝕐2≻Φt] + ⋅ ⋅ ⋅
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and try to cancel the one in r.h.s. using that in the l.h.s. This is possible by defining

Ψt≔Φt+
3𝜆
2 𝒬

−1[𝕐2≻Φt]

where

𝒬≔(m2−Δ𝜀).

Substituting the estimate (i.e. we are completing the above square). One get

�
𝕋𝜀3
Φt𝒬Φt+3𝜆�

𝕋𝜀3
Φt[𝕐2≻Φt]

=�
𝕋𝜀3
�Ψt −

3𝜆
2 𝒬

−1[𝕐2≻Φt]�𝒬�Ψt −
3𝜆
2 𝒬

−1[𝕐2≻Φt]�+3𝜆�
𝕋𝜀3
Φt[𝕐2≻Φt]

=�
𝕋𝜀3
Ψt𝒬Ψt −3𝜆�

𝕋𝜀3
Ψt[𝕐2≻Φt]+

9𝜆2
4 �𝕋𝜀3

(𝕐2≻Φt)𝒬−1(𝕐2≻Φt)+3𝜆�
𝕋𝜀3
Φt[𝕐2≻Φt]

=�
𝕋𝜀3
Ψt𝒬Ψt −

9𝜆2
4 �𝕋𝜀3

(𝕐2≻Φt)𝒬−1(𝕐2≻Φt)

6.1 The paracontrolled a-priori estimate

To recap, we definedℍ to be

∂
∂tℍt+(m2−Δ𝜀)ℍt=−𝜆2 𝕐t

3− 3𝜆2 𝕐t
2≻ℍt,

(solve this equation by a fix-point) and defined Φ≔Z −ℍ which satisfies

∂
∂t Φt=(Δ𝜀−m2)Φt −

𝜆
2 [−3𝜆𝕐

2≻ℍ+3𝕐2≻Z +3𝕐2∘Z +3𝕐2≺Z +3𝕐Z 2+Z 3]

=(Δ𝜀−m2)Φt −
𝜆
2 [[[[[[[[[[[[[[3𝕐

2≻Φ+3𝕐2∘Φ+3𝕐2∘ℍ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
dangerous terms!!!

+3𝕐2≺Z +3𝕐Z 2+Z 3]]]]]]]]]]]]]].

Recall the various regularities (we use 𝜅 for an arbitrary small >0 which can be different from
line to line)

term reg

𝕐1 −1/2−𝜅
𝕐2 −1−𝜅
𝕐3 “−3/2−𝜅”(as space-time distribution)

ℍ 1/2−𝜅
𝕐2≻Φ −1−𝜅
Φ 1−𝜅
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Then we tested with Φ to get

1
2
∂
∂t �𝕋𝜀3

Φt
2+ �

𝕋𝜀3
Φt(m2−Δ𝜀)Φt + 𝜆2 �𝕋𝜀3

Φt
4

= �
𝕋𝜀3
Φ�−32 𝜆𝕐

2≻Φ− 32 𝜆𝕐
2∘Φ�

+�
𝕋𝜀3
Φ�−32 𝜆𝕐

2∘ℍ− 12 𝛽′(𝕐
1+Z)�

−32 𝜆�𝕋𝜀3
Φ(𝕐2≺Z +𝕐1Z 2)− 𝜆2 �𝕋𝜀3

Φ((ℍ+Φ)3−Φ3)

and we did a transformation to the combination (in which all the terms are “ill defined”, i.e. I
cannot hope to control them separately in the limit)

A≔�
𝕋𝜀3
Φ(m2−Δ𝜀)Φ+�

𝕋𝜀3
Φ�32 𝜆𝕐

2≻Φ+ 32 𝜆𝕐
2∘Φ�

we use a “commutator lemma” to replace ∫Φ(𝕐2∘Φ)with ∫(𝕐2≻Φ)Φmodulo nice error term:

A=�
𝕋𝜀3
Φ(m2−Δ𝜀)Φ+�

𝕋𝜀3
Φ[3𝜆𝕐2≻Φ]+𝜆D(Φ,𝕐2,Φ)

Then we defined Ψ so that

Φ=−3𝜆2 (m
2−Δ𝜀)−1[𝕐2≻Φ]+Ψ,

A= �
𝕋𝜀3
Ψt(m2−Δ𝜀)Ψt+

9𝜆
4 �𝕋𝜀3

(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)+𝜆D(Φ,𝕐2,Φ)

At this point we have decomposed X as

X=𝕐1+ℍ− 3𝜆2 (m
2−Δ𝜀)−1[𝕐2≻Φ]+Ψ (13)

where

Φ=X −𝕐1−ℍ=−3𝜆2 (m
2−Δ𝜀)−1[𝕐2≻Φ]+Ψ

with these different functions satisfying the a-priori equation

1
2
∂
∂t�𝕋𝜀3

Φ2+�
𝕋𝜀3
Ψ(m2−Δ𝜀)Ψ+

𝜆
2 �𝕋𝜀3

Φ4

= �
𝕋𝜀3 [[[[[[[[[[[[−

9𝜆2
4 �𝕋𝜀3

(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)−
3
2 𝜆Φ𝕐

2∘ℍ− 12 𝛽′Φ(𝕐
1+Z)]]]]]]]]]]]]

+𝜆D(Φ,𝕐2,Φ)− 32 𝜆�𝕋𝜀3
Φ(𝕐2≺Z +𝕐1Z 2)− 𝜆2 �𝕋𝜀3

Φ((ℍ+Φ)3−Φ3)
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The good guys are on the l.h.s and the bad guys on the r.h.s., with the ugly guys in orange.

The terms in orange are still out of control, in particular they contain products which are not well
defined (because the regularities do not sum up to positive).

Let us pause a moment and try to understand the meaning of the decomposition (13): this is the
key point of these new approaches to singular SPDEs (i.e. regularity structures or paracontrolled
distributions). The message is that we cannot just look at generic functions in a given vector
space (like in classical PDE theory) but we need to specify the solution as an “expansion” in
terms (explicit or implicit) of different character. In the paracontrolled approach this involves the
regularity of the various terms

X= 𝕐1�
−1/2−𝜅

+ ℍ�
1/2−𝜅

− 3𝜆2 (m
2−Δ𝜀)−1[𝕐2≻Φ]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

1−𝜅

+Ψ�
H 1
,

(actually Ψ is even better than H1, if I remember correctly it has regularity 3/2).

For example one could see from this that for the LP blocks one has

Δi X ∼ (2i)1/2+𝜅,
Δi X −Δi𝕐1 ∼ (2i)−1/2−𝜅
Δi X −Δi𝕐1−Δiℍ ∼ (2i)−1−𝜅

Δi X −Δi𝕐1−Δiℍ+
3𝜆
2 Δi{(m2−Δ𝜀)−1[𝕐2≻Φ]} ∼ (2i)−1

which can be interpreted by saying that my solution lives in a very particular subspace of the space
of Besov functions of regularity −1/2 (we could take for example H−1/2−𝜅).

In particular the stochastic objects 𝕐1,ℍ,𝕐2 do not have better regularity as those stated (i.e.
they are almost surely not in𝒞−1/2,𝒞1/2,𝒞1 (think about Hölder regularity of BM).

6.2 The second renormalization

We need to understand what is going on with the red term

�
𝕋𝜀3 [[[[[[[[[[[[−

9𝜆2
4 �𝕋𝜀3

(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)−
3
2 𝜆Φ𝕐

2∘ℍ− 12 𝛽′Φ(𝕐
1+Z)]]]]]]]]]]]]

which contains not-well defined products.

Start with𝕐2∘ℍ: use the definition ofℍ (whereℒ=∂t+(m2−Δ𝜀))

ℍ=−𝜆2 𝕐
[3]− 3𝜆2 ℒ

−1(𝕐2≻ℍ),

recall also that𝕐[3]=ℒ−1𝕐3 (with reg. 1/2−𝜅), and write it as

𝕐2∘ℍ=−𝜆2 𝕐
2∘𝕐[3]− 3𝜆2 𝕐

2∘ℒ−1(𝕐2≻ℍ).
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For 𝕐2 ∘𝕐[3] we can show by probabilistic arguments involving Wick products (i.e. explicit
formulas for polynomials of Gaussian) that one can define other polynomials𝕐2∘[3] and𝕐2∘[2]

𝕐2∘𝕐[3]=𝕐2∘ℒ−1𝕐3=⟦Y 2⟧∘ℒ−1⟦Y 3⟧=𝕐2∘[3]+3d𝜀𝕐1,

𝕐2∘ℒ−1𝕐2=𝕐2∘[2]+d𝜀

where d𝜀 is a constant which diverges logarithmically with 𝜀. This is not much different from
what we did in d =2 and in d=3 for the products Y 3,Y 2. The random field 𝕐2∘[3] and 𝕐2∘[2]

converge as 𝜀→0 to well defined random field such that

𝕐2∘[3]≔𝕐2∘𝕐[3]−3d𝜀𝕐1∈C(ℝ+,𝒞1/2−𝜅)

𝕐2∘[2]≔𝕐2∘ℒ−1𝕐2−d𝜀∈C(ℝ+,𝒞−𝜅)

In terms of Feynman graphs one could write

𝕐2∘𝕐[3]= 𝕐2 𝕐3ℒ−1

which can be decomposed in orthogonal terms

=
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦
⟦

𝕐2 𝕐3 ⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧
⟧
+32
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦
⟦

𝕐2 𝕐3

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧
⟧
+322

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐3

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧

=⟦Y 2⟧⋄0ℒ−1⟦Y 3⟧+32⟦Y 2⟧⋄1ℒ−1⟦Y 3⟧+322⟦Y 2⟧⋄2ℒ−1⟦Y 3⟧

and one has that the last one is diverging while the other two are well defined

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐3

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧

⟧

⟧
≈�

𝕋𝜀3
dxP(x−y)�

ℒ−1

G(x− y)2�
two contraction lines

Y(y)≈�
𝕋𝜀3
dx 1
|x|3|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

∝d𝜀

Y(y)

since the correlation function

G(x−y)=𝔼[Y(x)Y(y)]≈ �
k∈ℤ3∩[−𝜀−1,𝜀−1]3

eik(x−y)

k2+m2
≈ 1
|x−y|

and the kernel P ofℒ−1 behaves in the same way

P(x− y)≈ |x− y|−1.
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For𝕐2∘ℒ−1𝕐2 one can do the same:

𝕐2∘𝕐[2]= 𝕐2 𝕐2ℒ−1

=

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐2ℒ−1

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧
+22

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐2ℒ−1

G

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
∝∫ dx

|x|2
<+∞

+22

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐2ℒ−1

G

G ⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
≔d𝜀∝∫

dx
|x|3
≈log𝜀−1

=𝕐2∘[2]+d𝜀

where𝕐2∘[2] denotes the sum of the first two graphs.

Let us go back to 𝕐2 ∘ℍ. The first step is to use commutator lemmas for paraproducts and
resonant products:

Commutator lemmas roughly say that one can usually write

f ∘ (g≻h)≈( f ∘g)h

modulo “nice terms”. Similar statements can be made when there are other nice linear opera-
tions in between, e.g.

f ∘ℒ−1(g≻h)≈( f ∘ℒ−1g)h, f ∘(m2−Δ)−1(g≻h)≈( f ∘ (m2−Δ)−1g)h

This is enough to show that

𝕐2∘ℒ−1(𝕐2≻ℍ)=[𝕐2∘ℒ−1(𝕐2)]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
ugly guy!

ℍ+C(𝕐2,𝕐2,ℍ)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
nice commutator

=(𝕐2∘[2]+d𝜀)ℍ+C(𝕐2,𝕐2,ℍ)

Therefore we can handle the full term𝕐2∘ℍ as

𝕐2∘ℍ=−𝜆2𝕐
2∘𝕐[3]||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
uglyguy!

− 3𝜆2 𝕐
2∘ℒ−1(𝕐2≻ℍ)

=−𝜆2 (𝕐
2∘[3]+3d𝜀𝕐1)−

3𝜆
2 (𝕐

2∘[2]+d𝜀)ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)

=−𝜆2 𝕐
2∘[3]− 3𝜆2 𝕐

2∘[2]ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)− 3𝜆2 d𝜀(𝕐1+ℍ)

and we see precisely how𝕐2∘ℍ diverges as 𝜀→0, due to the presence of d𝜀.
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Now our task is to handle the other dangerous term (highlighted in red):

�
𝕋𝜀3
(𝕐2≻Φt)𝒬−1(𝕐2≻Φt)

with𝒬=(m2−Δ𝜀). We can decompose it with paraproducts and some commutator lemma as

B= �
𝕋𝜀3
(𝕐2≻Φt)𝒬−1(𝕐2≻Φt) = �

𝕋𝜀3
(𝕐2≻Φt)∘𝒬−1(𝕐2≻Φt)

(only the resonant term counts in integrals)

B= �
𝕋𝜀3
(𝕐2∘𝒬−1𝕐2)Φ2 +C′(𝕐2,𝕐2,Φ,Φ)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

nice commutator

The same considerations as above apply to the explicit polynomial𝕐2∘𝒬−1𝕐2 and one defines

𝕐2∘{2}≔𝕐2∘𝒬−1𝕐2−d𝜀

with the same constant as above. It is very similar to𝕐2∘ℒ−1𝕐2, in particular the divergent part
is the same! (very important). So the analysis of B gives

B=�
𝕋𝜀3
𝕐2∘{2}Φ2+C′(𝕐2,𝕐2,Φ,Φ)+ �

𝕋𝜀3
d𝜀Φ2 .

Putting all together we have

�
𝕋𝜀3 [[[[[[[[[[[[−

9𝜆2
4 �𝕋𝜀3

(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)−
3
2 𝜆Φ(𝕐

2∘ℍ)− 12 𝛽′Φ(𝕐
1+Z)]]]]]]]]]]]]

=−9𝜆
2

4 �𝕋𝜀3
𝕐2∘{2}Φ2− 9𝜆4 C′(𝕐2,𝕐2,Φ,Φ)

−3𝜆2 �𝕋𝜀3
Φ�−𝜆2 𝕐

2∘[3]− 3𝜆2 𝕐
2∘[2]ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)�

−9𝜆
2

4 �𝕋𝜀3
Φ[d𝜀(𝕐1+ℍ+Φ)] − 12 𝛽′Φ(𝕐

1+Z),

and now the remarkable fact is that we can choose𝛽′=−9𝜆2d𝜀/2 in order to cancel the divergences
coming from d𝜀. This means by choosing appropriately 𝛽 we can remove all the divergences
coming from ill-defined products of irregular Gaussian polynomials.

This is possible because this model is “superrenormalizable”, or also called “subcritical”, i.e. the
linear part of the equation dominates the irregular terms in small scales, or said otherwise the non-
linear irregular terms can be treated as a perturbation of the linear part.
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We are at the point where in our a-priori estimate we do not have any more ugly term, all the
products are well defined with the available regularity and the only step remaining is to check that
we can close the a-priori estimates, i.e. estimate every term in the l.h.s. with the good terms in the
r.h.s.

Let's summarize the discussion of this morning by writing down the final equation which will give
rise to our a-priori estimates.

1
2
∂
∂t �𝕋𝜀3

Φ2+�
𝕋𝜀3
[|∇𝜀Ψ|2+m2Ψ2]+ 𝜆2 �𝕋𝜀3

Φ4=𝒜

𝒜≔−9𝜆
2

4 �𝕋𝜀3
𝕐2∘{2}Φ2− 9𝜆4 C′(𝕐2,𝕐2,Φ,Φ)

−3𝜆2 �𝕋𝜀3
Φ�−𝜆2 𝕐

2∘[3]− 3𝜆2 𝕐
2∘[2]ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)�

+𝜆D(Φ,𝕐2,Φ)− 32 𝜆�𝕋𝜀3
Φ(𝕐2≺Z +𝕐1Z 2)− 𝜆2 �𝕋𝜀3

Φ((ℍ+Φ)3−Φ3)

−[[[[[[[[[[9𝜆
2

4 +
1
2 𝛽′]]]]]]]]]]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=0

�
𝕋𝜀3
Φ[d𝜀(𝕐1+ℍ+Φ)]

(14)

where we have a series of explicit probabilistic objects

𝕐1=Y ∈𝒞−1/2−𝜅 𝕐2∘{2}≔𝕐2∘𝒬−1𝕐2−d𝜀 ∈𝒞−𝜅

𝕐2=Y 2− c𝜀 ∈𝒞−1−𝜅 𝕐2∘[2]≔𝕐2∘ℒ−1𝕐2−d𝜀 ∈𝒞−𝜅

𝕐[3]=ℒ−1(Y 3−3c𝜀Y) ∈𝒞1/2−𝜅 𝕐2∘[3]≔𝕐2∘ℒ−1𝕐3−3d𝜀Y ∈𝒞−1/2−𝜅

ℍ=−𝜆2 𝕐
[3]− 3𝜆2 ℒ

−1(𝕐2≻ℍ), ∈𝒞1/2−𝜅

(meaning that we can have uniform estimates in the corresponding spaces which do not blow up as
𝜀→0). The unknowns X∈H−1/2−𝜅, Z ∈H1/2−𝜅, Φ∈H1−𝜅, Ψ∈H1, satisfying the decomposition

X=𝕐1+ℍ− 3𝜆2 (m
2−Δ𝜀)−1[𝕐2≻Φ]+Ψ (15)

where

Z ≔X −𝕐1,

Φ≔X −𝕐1−ℍ=−3𝜆2 (m
2−Δ𝜀)−1[𝕐2≻Φ]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
∈𝒞1−𝜅=B∞,∞1−𝜅

+ Ψ�
∈H 1=B2,21

.

With this decomposition one is able to prove that for small 𝛿>0 there exist an explicit function
Q(𝕐) such that

|𝒜|⩽Q(𝕐)+𝛿��
𝕋𝜀3
[|∇𝜀Ψ|2+m2Ψ2]+ 𝜆2�𝕋𝜀3

Φ4� (16)
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(at this point this kind of argument proceed as in d=2, i.e. via functional analytic estimates). The
function Q(𝕐) depends only on

𝕐≔(𝕐1,𝕐2,𝕐[3],𝕐2∘{2},𝕐2∘[2],𝕐2∘[3])

via norms of the kind

Q(𝕐)=Q(‖𝕐1‖C([0,T ],𝒞−1/2−𝜅), ‖𝕐2‖C([0,T ],𝒞−1−𝜅), . . . ),

in particular

sup
𝜀>0
𝔼[Q(𝕐𝜀)K]<∞

for any power K⩾1.

Using (16) in (14) we get that for 𝛿 small enough

Theorem 9. We have

1
2
∂
∂t�𝕋𝜀3

Φ2+(1−𝛿)��
𝕋𝜀3
[|∇𝜀Ψ|2+m2Ψ2]+ 𝜆2�𝕋𝜀3

Φ4�⩽Q(𝕐𝜀)

provided 𝛽 is chosen depending on 𝜀 in a precise divergent way

𝛽=C1𝜀−1+C2𝜆log(𝜀−1),

with constants C1,C2 which we computed above.

As in d=2 this can be now used to obtain a-priori estimates for the measure by taking the average
and use “stationarity”.

Remark. I'm ignoring some technical problem which need to be addressed, in particular one
cannot construct stationary solutions to the equation for ℍ, as a consequence both Φ and Ψ are
not stationary and the argument to get the appropriate estimates in average has to be modified. But
the changes are minor.

Anyway one obtain at the end that for any t∈[0,T],

𝔼��
𝕋𝜀3
[|∇𝜀Ψt|2+m2Ψt

2]+ 𝜆2�𝕋𝜀3
Φt
4�⩽𝔼Q(𝕐𝜀),

which given the relation of Ψ,Φ with X allows to obtain tightness, i.e. one can prove that

sup
𝜀
𝔼�‖X0𝜀‖H−1/2(𝕋𝜀3)

p �<∞,
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for any p>1. And even better, with some more care one can prove that

sup
𝜀
𝔼�exp�𝛽‖X0𝜀‖H−1/2(𝕋𝜀3)

1−𝜅 ��=sup
𝜀
�exp�𝛽‖𝜑‖H−1/2(𝕋𝜀3)

1−𝜅 �𝜈𝜀(d𝜑)<∞,

for small 𝜅>0 and 𝛽>0. So the measure 𝜈𝜀 allows uniform exponential integrability for some
power less than 1 of the norm ‖𝜑‖H−1/2(𝕋𝜀3). This is more than enough to obtain tightness.

6.3 The Φ3
4 measure without cutoffs

We must now combine the 𝜀→0 proof with the M→∞ proof. This is not difficult but one needs
to pay attention to some subtle detail.

Let us start by noting that the above a-priori estimates works also with weights, i.e. instead of
testing the elaborated equation with Φ one tests with 𝜌2Φ for some polynomial weight 𝜌. This
make appear weighted Besov norms of the type

‖𝜌𝜎𝕐1‖C([0,T ],𝒞−1/2−𝜅(Λ𝜀,M)), ‖𝜌
𝜎𝕐2‖C([0,T ],𝒞−1−𝜅(Λ𝜀,M)), . . .

for some 𝜎>0, and also norms like

‖𝜌1/2Φ‖L4(Λ𝜀,M), ‖𝜌∇𝜀Φ‖L2(Λ𝜀,M), ‖𝜌Φ‖L2(Λ𝜀,M)

for the solution. The first point is to make sure that norms like

‖𝜌𝜎𝕐1‖C([0,T ],𝒞−1/2−𝜅(Λ𝜀,M))

are uniformly bounded in M as M→∞. The idea is that all the processes (𝕐𝜏)𝜏 growth at infinity
at most polynomially with a small power, e.g. one can prove

|Δi𝕐t
1(x)|⩽C (1+ |x|)𝛿(1+ |t|)𝛿, t∈ℝ,x∈Λ𝜀,M

uniformly in M and 𝜀 for some finite random constant C. It is somehow clear that one cannot get
better estimates, in particular this kind of stochastic processes cannot be bounded in the full space
without weight.

Example. A discrete model. Let (Gn)n⩾1 a family of i.i.d𝒩(0,1), then one can prove that there
exists a random constant C<∞ almost surely such that

|Gn(𝜔)|⩽(C(𝜔)+c log1/2n), n⩾1

almost surely for some deterministic constant c. To prove this one shows that

Q(𝜔)≔�
n⩾1

1
n2

e𝛽|Gn(𝜔)|2
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is integrable for small 𝛽. This implies that it is finite a.s. and then of course that

e𝛽|Gn(𝜔)|2⩽n2Q(𝜔), ⇒ |Gn(𝜔)|⩽�
2
𝛽 logn+ 1𝛽 logQ(𝜔)�

1/2

for all n⩾1.

However the biggest problem come from the equation ofℍ:

ℍ=−𝜆2 𝕐
[3]− 3𝜆2 ℒ

−1(𝕐2≻ℍ),

since it cannot be solved in weighted spaces: indeed there is a loss of weight in the estimate of the
second term. One can then use a trick to solve this problem. See the paper.

At the end one obtains estimates of the form

sup
𝜀,M
𝔼𝜀,M[exp(𝛽‖𝜌X0𝜀‖H−1/2(Λ𝜀)

1−𝜅 )]=sup
𝜀,M
�exp(𝛽‖𝜌𝜑‖H−1/2(Λ𝜀)

1−𝜅 )𝜈𝜀,M(d𝜑)<∞. (17)

It is well enough to have full tightness both in the 𝜀→0 and in the M→∞ limit, irrespective of
the size of 𝜆 (can be arbitrary large). This is a fully non-perturbative technique.

In conclusion one obtain accumulation points of the family (𝜈𝜀,M) and then it is easy to prove
that any of these acc. points is translation invariant and RP, moreover the estimate (17) allow
to prove the technical condition required by the OS reconstruction. Any limit point 𝜈 give rise
to a translation invariant (no rotation so far), RP and “nice” measure and then to a QFT by OS
reconstruction.

We do not have uniqueness, nor rotation invariance. If one can prove uniqueness it should be
“easy” to prove rotation invariance.

6.4 Some properties of Φ3
4

Let's now prove some properties of this measure. First of all that for any 𝜆>0 any accumulation
point is non-Gaussian.

Remark. Ideally one would like to have non-triviality, i.e. that the corresponding QFT describes
interacting particles. A Gaussian measure is trivial.

Let us call 𝜈 a arbitrary accumulation point. The first remark is that one can actually prove tight-
ness for the triple of stationary processes �X𝜀,M,Y𝜀,M,𝕐𝜀,M

[3] �𝜀,M. Let us call

(X,Y ,𝕐[3]),
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a limit in law of the family. Of course X0∼𝜈 (i.e. is an accumulation point for (𝜈𝜀,M)𝜀,M). But
we have also the dynamics and a coupling of X,Y , in particular this coupling satisfy the same
estimates as we have before the limit, that is

𝜁≔X −𝕐1+ 𝜆2 𝕐
[3]∈H1−𝜅

in particular we have that

�Δi X −Δi𝕐1+
𝜆
2 Δi𝕐[3]�≈ (2i)−1+𝜅.

This estimate tells us that there exists a coupling between the interacting field X and the free field
Y so that X is in “first approximation” given as above. In this very precise sense that if I look
at the interacting field Δi X at high-momenta, then I see essentially the free field Δi Y and then
a correction 𝜆

2 Δi𝕐[3] coming from the interaction (first-order in perturbation theory) and the
something else whose size is well controlled. This is not perturbation theory because 𝜆 can be
very large.

This is an expression of asymptotic freedom in the UV of the theory.

In order to show that X0 is not gaussian one can show that the 4-th moment is not given by the
usual formula for Gaussians. So we look at four-point function

U4i(X,X,X,X)≔𝔼[Δi X0(x)Δi X0(x)Δi X0(x)Δi X0(x)]−3(𝔼[Δi X0(x)Δi X0(x)])2

and we want to prove that

U4(X,X,X,X)≠0

because this implies that X is non-Gaussian. Note that

U4(Y ,Y ,Y ,Y)=0

since Y is Gaussian. Moreover U4 is a multilinear function, so we can use our decomposition of
X to write

X=Y − 𝜆2 𝕐
[3]+𝜁,

and

U4(X,X,X,X)=U4(Y ,Y ,Y ,Y)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

−2𝜆U4(Y ,Y ,Y ,𝕐[3])

+cU4(Y ,Y ,𝕐[3],𝕐[3])+cU4(Y ,𝕐[3],𝕐[3],𝕐[3])+cU4(Y ,Y ,Y , 𝜁)+ ⋅ ⋅ ⋅

An explicit computation shows that (both upper and lower bounds)

U4(Y ,Y ,Y ,𝕐[3])≈𝔼|Δi Y |3�
(2i)3/2

|Δi𝕐[3]|�
(2 i)−1/2

≈(2i)3/2−1/2≈2i,
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and rough bounds show that

|U4(Y ,Y ,𝕐[3],𝕐[3])|≈ [(2i)1/2+𝜅]2[(2i)−1/2+𝜅]2≈(2i)4𝜅

and all the other terms are as small and cannot compensate for U4(Y ,Y ,Y ,𝕐[3]) so finally one
deduce that

U4(X,X,X,X)=−2𝜆U4(Y ,Y ,Y ,𝕐[3])+O((2i)(1/2+5𝜅))≠0

for i large enough and 𝜆≠0. This proves non-Gaussianity of X0. And actually shows that the
correlation functions in the UV are given by first order perturbation theory.

7 Conclusion

The lectures end here. My main goal was to present several topics:

• The basic conceptual structure of QM and link with probability theory via the Euclidean
approach

• The meaning of RP as the bridge between QM and EQM or QFT and EQFT.

• How stochastic quantization via a Langevin equation allows to study certain “difficult” mea-
sures as push-forward of “easy” Gaussian measures.

• How to control the infinite volume limit via PDE arguments involving weighted spaces.

• How to control the UV limit via paraproducts and decompositions involving paraproducts.

• How divergences can be extracted and matched with local counter-terms in the “bare” inter-
action.

• How the resulting measure can be analyzed via the decompositions obtained and the coupling
with the free theory (despite the fact that Φ34 is not absolutely continuous wrt. the free field).
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