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Massimiliano Gubinelli
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Web page: https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021
Recorded lectures: https://uni-bonn.sciebo.de/s/6mTx2gYCfCscfFm

Today:

• Show the second renormalization (not present in d =2). [DONE]

• Finish the discussion of apriori estimates, both in finite and then infinite volume, this will
give tightness for the measure and existence of accumulation points.

• Give some properties of these accumulations points. (So far we do not have proofs of
uniqueness within the SQ approach) Remark: uniqueness is expected when 𝜆/m2 small
enough.

Let's summarize the discussion of this morning by writing down the final equation which will give
rise to our apriori estimates.
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where we have a series of explicit probabilistic objects

𝕐1 =Y ∈𝒞−1/2−𝜅 𝕐2∘{2} ≔𝕐2∘𝒬−1𝕐2 −d𝜀 ∈𝒞−𝜅

𝕐2 =Y 2− c𝜀 ∈𝒞−1−𝜅 𝕐2∘[2] ≔𝕐2∘ℒ−1𝕐2 −d𝜀 ∈𝒞−𝜅

𝕐[3] =ℒ−1(Y 3−3c𝜀Y) ∈𝒞1/2−𝜅 𝕐2∘[3] ≔𝕐2∘ℒ−1𝕐3 −3d𝜀Y ∈𝒞−1/2−𝜅

ℍ=−𝜆
2 𝕐[3] − 3𝜆

2 ℒ−1(𝕐2 ≻ℍ), ∈𝒞1/2−𝜅

(meaning that we can have uniform estimates in the corresponding spaces which do not blow up as
𝜀→0). The unknowns X ∈H−1/2−𝜅, Z ∈H1/2−𝜅, Φ∈H1−𝜅, Ψ∈H1, satisfying the decomposition

X =𝕐1 +ℍ− 3𝜆
2 (m2 −Δ𝜀)−1[𝕐2≻Φ]+Ψ (2)

where

Z ≔X −𝕐1,

Φ≔X −𝕐1−ℍ=−3𝜆
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With this decomposition one is able to prove that for small 𝛿 >0 there exist an explicit function
Q(𝕐) such that
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(at this point this kind of argument proceed as in d =2, i.e. via functional analytic estimates). The
function Q(𝕐) depends only on

𝕐≔(𝕐1,𝕐2,𝕐[3],𝕐2∘{2},𝕐2∘[2],𝕐2∘[3])

via norms of the kind

Q(𝕐)=Q(‖𝕐1‖C([0,T ],𝒞−1/2−𝜅), ‖𝕐2‖C([0,T ],𝒞−1−𝜅), . . . ),

in particular

sup
𝜀>0

𝔼[Q(𝕐𝜀)K]<∞

for any power K ⩾1.
At this point, using (3) in (1) we get that for 𝛿 small enough

Theorem 1. We have
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provided 𝛽 is chosen depending on 𝜀 in a precise divergent way

𝛽=C1𝜀−1 +C2𝜆log(𝜀−1),

with constants C1,C2 which we computed above.

As in d =2 this can be now used to obtain apriori estimates for the measure by taking the average
and use “stationarity”.

Remark. I'm ignoring some technical problem which need to be addressed, in particular one
cannot construct stationary solutions to the equation for ℍ, as a consequence both Φ and Ψ are
not stationary and the argument to get the appropriate estimates in average has to be modified. But
the changes are minor.

Anyway one obtain at the end that for any t ∈[0,T],
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which given the relation of Ψ,Φ with X allows to obtain tightness, i.e. one can prove that
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𝜀

𝔼�‖X0
𝜀‖H−1/2(𝕋𝜀

3)
p �<∞,

for any p>1. And even better, with some more care one can prove that
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for small 𝜅> 0 and 𝛽 > 0. So the measure 𝜈𝜀 allows uniform exponential integrability for some
power less than 1 of the norm ‖𝜑‖H−1/2(𝕋𝜀

3). This is more than enough to obtain tightness.

The Φ3
4 measure without cutoffs

We must now combine the 𝜀→0 proof with the M →∞ proof. This is not difficult but one needs
to pay attention to some subtle detail.
Let us start by noting that the above aprori estimates works also with weights, i.e. instead of
testing the elaborated equation with Φ one tests with 𝜌2Φ for some polynomial weight 𝜌. This
make appear weighted Besov norms of the type

‖𝜌𝜎𝕐1‖C([0,T ],𝒞−1/2−𝜅(Λ𝜀,M)), ‖𝜌𝜎𝕐2‖C([0,T ],𝒞−1−𝜅(Λ𝜀,M)), . . .

for some 𝜎>0, and also norms like

‖𝜌1/2Φ‖L4(Λ𝜀,M), ‖𝜌∇𝜀Φ‖L2(Λ𝜀,M), ‖𝜌Φ‖L2(Λ𝜀,M)

for the solution. The first point is to make sure that norms like

‖𝜌𝜎𝕐1‖C([0,T ],𝒞−1/2−𝜅(Λ𝜀,M))

are uniformly bounded in M as M →∞. The idea is that all the processes (𝕐𝜏)𝜏 growth at infinity
at most polynomially with a small power, e.g. one can prove

|Δi𝕐t
1(x)|⩽C (1+ |x|)𝛿(1+ |t|)𝛿, t ∈ℝ,x∈Λ𝜀,M

uniformly in M and 𝜀 for some finite random contant C. It is somehow clear that one cannot get
better estimates, in particular this kind of stochastic processes cannot be bounded in the full space
without weight.

Example. A discrete model. Let (Gn)n⩾1 a family of i.i.d 𝒩(0,1), then one can prove that there
exists a random constant C <∞ almost surely such that

|Gn(𝜔)|⩽(C(𝜔)+c log1/2 n), n⩾1

almost surely for some deterministic constant c. To prove this one shows that

Q(𝜔):=�
n⩾1

1
n2e𝛽|Gn(𝜔)|2

is integrable for small 𝛽. This implies that it is finite a.s. and then of course that

e𝛽|Gn(𝜔)|2 ⩽n2Q(𝜔), ⇒ |Gn(𝜔)|⩽� 2
𝛽logn+ 1

𝛽logQ(𝜔)�
1/2

for all n⩾1.

However the biggest problem come from the equation of ℍ:

ℍ=−𝜆
2 𝕐[3] − 3𝜆

2 ℒ−1(𝕐2≻ℍ),

since it cannot be solved in weighted spaces: indeed there is a loss of weight in the estimate of the
second term. One can then use a trick to solve this problem. See the paper.
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At the end one obtains estimates of the form

sup
𝜀,M

𝔼𝜀,M[exp(𝛽‖𝜌X0
𝜀‖H−1/2(Λ𝜀)

1−𝜅 )]=sup
𝜀,M

� exp(𝛽‖𝜌𝜑‖H −1/2(Λ𝜀)
1−𝜅 )𝜈𝜀,M(d𝜑)<∞. (4)

It is well enough to have full tightness both in the 𝜀 → 0 and in the M → ∞ limit, irrespective of
the size of 𝜆 (can be arbitrary large). This is a fully non-perturbative technique.
In conclusion one obtain accumulation points of the family (𝜈𝜀,M) and then it is easy to prove
that any of these acc. points is translation invariant and RP, moreover the estimate (4) allow
to prove the technical condition required by the OS reconstruction. Any limit point 𝜈 give rise
to a translation invariant (no rotation so far), RP and “nice” measure and then to a QFT by OS
recostruction.
We do not have uniqueness, nor rotation invariance. If one can prove uniqueness it should be
“easy” to prove rotation invariance.

Some properties of Φ3
4

Let's now prove some properties of this measure. First of all that for any 𝜆>0 any accumulation
point is non-Gaussian.

Remark. Ideally one would like to have non-triviality, i.e. that the corresponding QFT describes
interacting particles. A Gaussian measure is trivial.

Let us call 𝜈 a arbitrary accumulation point. The first remark is that one can actually prove tight-
ness for the triple of stationary processes �X𝜀,M,Y𝜀,M,𝕐𝜀,M

[3] �𝜀,M. Let us call

(X,Y ,𝕐[3]),

a limit in law of the family. Of course X0 ∼ 𝜈 (i.e. is an accumulation point for (𝜈𝜀,M)𝜀,M). But
we have also the dynamics and a coupling of X, Y , in particular this coupling satisfy the same
estimates as we have before the limit, that is

𝜁≔X −𝕐1 + 𝜆
2 𝕐[3] ∈H1−𝜅

in particular we have that

�ΔiX −Δi𝕐1+ 𝜆
2 Δi𝕐[3]�≈ (2i)−1+𝜅.

This estimate tells us that there exists a coupling between the interacting field X and the free
field Y so that X is in “first approximation” given as above. In this very precise sense that if I
look at the interacting field ΔiX at high-momenta, then I see essentially the free field ΔiY and
then a correction 𝜆

2 Δi𝕐[3] coming from the interaction (first-order in perturbation theory) and the
something else whose size is well controlled. This is not perturbation theory because 𝜆 can be
very large.
This is an expression of asymptotic freedom in the UV of the theory.
In order to show that X0 is not gaussian one can show that the 4-th moment is not given by the
usual formula for Gaussians. So we look at four-point function

U4
i(X,X,X,X)≔𝔼[ΔiX0(x)ΔiX0(x)ΔiX0(x)ΔiX0(x)]−3(𝔼[ΔiX0(x)ΔiX0(x)])2

4



and we want to prove that

U4(X,X,X,X)≠0

because this implies that X is non-Gaussian. Note that

U4(Y ,Y ,Y ,Y)=0

since Y is Gaussian. Moverover U4 is a multilinear function, so we can use our decomposition of
X to write

X =Y − 𝜆
2 𝕐[3] +𝜁,

and

U4(X,X,X,X)=U4(Y ,Y ,Y ,Y)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
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−2𝜆U4(Y ,Y ,Y ,𝕐[3])

+cU4(Y ,Y ,𝕐[3],𝕐[3])+cU4(Y ,𝕐[3],𝕐[3],𝕐[3])+cU4(Y ,Y ,Y , 𝜁)+ ⋅ ⋅ ⋅

An explicit computation shows that (both upper and lower bounds)

U4(Y ,Y ,Y ,𝕐[3])≈𝔼|ΔiY |3�
(2 i)3/2

|Δi𝕐[3]|�
(2 i)−1/2

≈(2i)3/2−1/2 ≈2i,

and rough bounds show that

|U4(Y ,Y ,𝕐[3],𝕐[3])|≈ [(2i)1/2+𝜅]2[(2i)−1/2+𝜅]2 ≈(2i)4𝜅

and all the other terms are as small and cannot compensate for U4(Y , Y , Y , 𝕐[3]) so finally one
deduce that

U4(X,X,X,X)=−2𝜆U4(Y ,Y ,Y ,𝕐[3])+O((2i)(1/2+5𝜅))≠0

for i large enough and 𝜆 ≠ 0. This proves non-Gaussianity of X0. And actually shows that the
correlation functions in the UV are given by first order perturbation theory.

Wrap up
The lectures end here. My main goal was to present several topics:

• The basic conceptual structure of QM and link with probability theory via the Euclidean
approach

• The meaning of RP as the bridge between QM and EQM or QFT and EQFT.

• How stochastic quantisation via a Langevin equation allows to study certain “difficult”
mesaures as pushforward of “easy” Gaussian measures.

• How to control the infinite volume limit via PDE arguments involving weighted spaces.

• How to control the UV limit via paraproducts and decompositions involving paraproducts.

• How divergences can be extracted and matched with local counterterms in the “bare”
interaction.
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• How the resulting measure can be analyzed via the decompositions obtained and the cou-
pling with the free theory (despite the fact that Φ3

4 is not absolutely continuous wrt. the
free field).

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
These lecture notes are produced using the computer program TEXMACS. If you want to know more go here www.texmacs.org.
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