
Lectures on Stochastic quantisation – Milan
Massimiliano Gubinelli

Lecture 2 | 15.2.2021 | 14:00–16:00 via Zoom

Web page: https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021

Recorded lectures: https://uni-bonn.sciebo.de/s/6mTx2gYCfCscfFm

(we continue the discussion of this morning)

�QM (for us here): a triplet (𝒜,𝜔,𝛼) composed of a C∗-algebra (non-commutative), a state 𝜔
and a dynamic one-parameter automorphism group 𝛼 of 𝒜.

Symmetries (i.e. Poincaré invariance) are represented by automorphisms of 𝒜, for example time-
translations are symmetries.

Given the observables a1, . . . ,an (self-adjoint elements of 𝒜) and the sequence of times t1, . . . , tn
one would like to compute

𝜔(𝛼t1(a1)⋅ ⋅ ⋅𝛼tn(an)).

One of the interests of having a specific representation is that it is then possible to proceed to
numerical approximations of such quantities.

Dynamics acts on states by duality (𝛼t𝜔)(a)=𝜔(𝛼t(a)).

We will assume that we have an invariant state 𝜔 at our disposal, i.e. 𝛼t𝜔 = 𝜔. We consider
the GNS representation (ℋ𝜔, 𝜋𝜔, 𝜑𝜔). In this case there is a one-parameter group of unitary
operators (U(t))t∈ℝ in ℋ𝜔

𝜋𝜔(𝛼t(a))=U(t)−1𝜋𝜔(a)U(t), U(t)𝜑𝜔 =𝜑𝜔,

and we assume that they are weakly continuous (and therefore strongly continuous).

In particular we have now for tn ⩽ tn−1 ⩽ ⋅ ⋅ ⋅ ⩽ t1,

𝜔(𝛼t1(a1)⋅ ⋅ ⋅𝛼tn(an))=⟨𝜑𝜔, A1U(t1 − t2)A2⋅ ⋅ ⋅U(tn−1 − tn)An𝜑𝜔⟩ ≔W({ak}, {tk}) (1)

with Ak =𝜋𝜔(ak).

These correlation functions depends only on the differene between times (i.e. they are time-
invariant).

One says that 𝜑𝜔 is cyclic if the span of the vectors of the form

A1U(t1− t2)A2⋅ ⋅ ⋅U(tn−1 − tn)An𝜑𝜔

for arbitrary As and times, is dense in ℋ.

�Provided the vector 𝜑𝜔 is cyclic the family of all correlation functions of the form (1) for all
obsevables and all increasing sets of times form a complete description of the dynamics of a given
quantum system, i.e. allow to reconstruct (ℋ𝜔, 𝜋𝜔, 𝜑𝜔) and also (U(t))t∈ℝ. These are (baby)
Wightman functions.
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Euclidean quantum mechanics
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EQM means to do QM in “imaginary time”. What does this means precisely?
We need to understand what is the unitary group U(t) at imaginary times.
�By Stone's theorem the strongly continuous unitary group (U(t))t∈ℝ corresponds to a homo-
morphism X:C(ℝ;ℂ)→ℬ(ℋ) of C∗-algebra algebras such that X(eit⋅)=U(t) for all t ∈ℝ.
Exercise: check that (X(e it⋅))t∈ℝ is a unitary group.
I.e. f ,g∈C(ℝ;ℂ) then X( f ),X(g)∈ℬ(ℋ) and X( f )X(g)=X( fg)=X(g)X( f ). If et(x)=exp(itx)
then X(et)=U(t). One could write f (X)≔X( f ) (its a notation). Then f (X)g(X)=( fg)(X).
I know what does it means to take t = i𝜏 in et(x), that is x↦ei𝜏(x)=exp(−𝜏x) but this function is
not bounded in general. I would need that 𝜏⩾0 and x⩾0.

The group U is of positive energy iff X( f )=0 for all f with support in {x<0:x∈ℝ}.
� In this case one can define K(s)=X(e−s⋅1ℝ+)∈ℬ(ℋ) for all s⩾0 (with some care) and observe
that K(t +s)=K(t)K(s), ‖K(t)‖⩽1 and that t ↦K(t) is strongly continuous: (K(t))t⩾0 is a strongly
continuous semigroup of contractions.
� The notable fact is that, given a strongly continuous contractive semigroup (K(t))t⩾0 one can
reconstructs X and then U so they corresponds each other one-to-one and express essentially the
same object, in our case the Hilbert space realisation of the dynamics of the quantum system.
The idea now is to take correlation functions for a dynamics with positive energy and continue it
to imaginary time differences to obtain correlation functions of the form

S({ak}, {tk})≔⟨𝜑𝜔, A1K(t1)A2⋅ ⋅ ⋅K(tn−1)An𝜑𝜔⟩ (2)

for arbitrary operators ak and positive times tk. We call these Schwinger functions.
Can I go back? S →W →(ℋ,𝜋,𝜑,U)??
Somewhere inside the family (S) there exists the information of the scalar product in the Hilbert
space:

S((a3
∗,a2

∗,a1
∗,a1,a2,a3), (t2, t1, t1, t2))=⟨𝜑𝜔, A3

∗K(t2)A2
∗K(t1)A1

∗A1K(t1)A2K(t2)A3𝜑𝜔⟩

=⟨A1K(t1)A2K(t2)A3𝜑𝜔, A1K(t1)A2K(t2)A3𝜑𝜔⟩⩾0.

And many other relations like this. The set of all these positivity properties is called reflection
postivity (RP) or Osterwalder–Schräder positivity. The functions S encode (approximations) of
all the possible scalar products, and also encode the fact that K is a strongly continuous semigroup
of contractions.
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The baby version of the Osterwalder–Schräder reconstruction theorem says that:

Theorem. (OS reconstruction) From the family of functions {S(𝔸,𝕋)}𝔸,𝕋 one can recover the
QM data, in particular the Wightman functions {W(𝔸,𝕋)}𝔸,𝕋 provided these functions satisfy
three properties:

a) Reflection positivity. (encode the geometry of the Hilbert space)

b) Compatibility condition (e.g. encoding the fact that K is a semigroup and other natural
algebraic condition)

c) Analytic condition (which encodes the contractivity of the semigroup K + other ana-
lytic constraint)

Functions satisfying these properties are called Schwinger functions.

An example of analytic condition is something like:

�� S((ak), (t1, . . . , tn))g1(t1)⋅ ⋅ ⋅gn(tn)dt1⋅ ⋅ ⋅dtn� ⩽Ck((((((((((((�
k

‖ak‖𝒜))))))))))))�
k

(((((((((((( sup
x∈ℝ+

�� e−txgk(t)dt�)))))))))))). (3)

�So the problem of the construction of interesting QM dynamics is reduced to that of finding
Schwinger functions, i.e. correlation functions which satisfy the three above mentioned condi-
tions.

It is a remarkable fact (Nelson, Symanzik,...) that the correlation functions of certain probabilistic
models are Schwinger functions.
I want to illustrate this in the simplest case where I have one degrees of freedom, i.e. there exists a
particular commutative subalgebra 𝒜′⊆𝒜 isomorphic to C(ℝ;ℂ) so I can identify its elements
with elements a∈C(ℝ;ℂ). I will use only these obserable algebra to construct Schwinger func-
tions {S}, and we will assume moreover that

S(a1, . . . ,an, t1, . . . , tn−1)=𝔼[a1(Xs1)⋅ ⋅ ⋅an−1(Xsn−1)an(XT)]

with sk = tk + ⋅⋅⋅ + tn−1+T for an arbitrary T ∈ℝ where (Xt)t∈ℝ is a real valued stochastic process
(let's say with trajectories in C(ℝ;ℝ)). In order for this definition not to depend on T we require
that the process X is stationary in time, i.e. the processes (Xt)t∈ℝ and (Xt+s)t∈ℝ have the same law
for all s∈ℝ (we can take T =0 in the above definition).
So the question now becomes: under which conditions on the law of X these Schwinger functions
have the form (2) for some quantum data and contractive semigroup K?
It is not difficult to show that the family of such functions satisfy the compatibility conditions in
Theorem 2.
Reflection positivity is trickier. We need to formulate it in the probabilistic language.
On functions F on on C(ℝ; ℝ) we can introduce an operation Θ of time inversion such that
(ΘF)(x)=F(𝜃x) with (𝜃x)(t)=x(−t) is the time-reflection of the path x∈C(ℝ;ℝ).
Then for any complex function F on C(ℝ⩾0;ℝ) of the form

F(x)=�
k

ck e i𝜆kx(tk) x∈C(ℝ⩾0;ℝ) (4)
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with coefficients ck∈ℂ,𝜆k∈ℝ, tk∈ℝ⩾0 (note that the times are positive!), the RP of the Schwinger
functions become the relation

𝔼[ΘF(X)F(X)]⩾0. (5)

Definition 1. A measure on C(ℝ;ℝ) is reflection positive iff eq. (5) holds for any cylinder func-
tion supported on positive times.

This is already a nontrivial condition.
Let's assume X is Gaussian and stationary. Then it has to be centered and with covariance C(t)=
𝔼[XtX0] such that

0⩽𝔼[[[[[[[[[[[[((((((((((((�
k

c̄k X−tk))))))))))))((((((((((((�
k

ck Xtk))))))))))))]]]]]]]]]]]]=�
k,k′

ckc̄k′C(tk + tk′)

for any ck ∈ℂ and tk ⩾0. Functions satisfying this property are called totally monotone.
By a theorem of Bernstein a bounded and totally monotone function C:ℝ⩾0 → ℂ has the repre-
sentation

C(t)=�
ℝ⩾0

e−tx𝜈(dx)

for some bounded positive measure 𝜈 on ℝ+. In this case, indeed,

�
k,k′

ckc̄k′C(tk + tk′)=�
ℝ⩾0

��
k

cke−tkx�
2
𝜈(dx)⩾0.

The simplest case is when the measure 𝜈 is concentrated in a point 𝛼>0, then we have the covari-
ance

C(t)= e−𝛼|t|

2𝛼 , t ∈ℝ,

with an arbitrary normalization (see below).
The corresponding Gaussian process is called the Ornstein–Uhlenbeck process (OU) and we con-
clude that any scalar reflection positive Gaussian process in one dimension can be constructed by
taking sums of independent OU processes (see the QMFI lecture notes).

Symmetric Markov processes
Another important strategy to obtain RP processes is to use Markovianity. Let X be a Markov
process, i.e. such that

𝔼[ f (Xt)|ℱs]=𝔼[ f (Xt)|Xs],

where (ℱs=𝜎(Xr:r ⩽s))s∈ℝ is the filtration generated by X. Recalling the support of the function
F in the RP condition, we have

𝔼[ΘFF]=𝔼[𝔼[ΘFF|ℱ0]]=𝔼[ΘF 𝔼[F|ℱ0]]⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
Markovianity

𝔼[ΘF 𝔼[F|X0]]

=𝔼[𝔼[ΘF|X0]𝔼[F|X0]]
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An easy condition to force positivity of this quantity is to assume that the law of X is symmetric
wrt. time inversion, i.e. X ∼𝜃X, in this case 𝔼[ΘF|X0]=𝔼[F|X0] and we have

𝔼[ΘF(X)F]=𝔼[𝔼[F(X)|X0]𝔼[F(X)|X0]]=𝔼[|𝔼[F(X)|X0]|2]⩾0.

Indeed

𝔼[𝔼[ΘF(X)|X0]g(X0)]=𝔼[F(𝜃X)g(X0)]=𝔼[F(𝜃X)g(𝜃X0)]⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
symmetry

𝔼[F(X)g(X0)]

=𝔼[𝔼[F(X)|ℱ0]g(X0)] ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
Markov.

𝔼[𝔼[F(X)|X0]g(X0)]

for arbitrary g so indeed 𝔼[ΘF(X)|X0]=𝔼[F(X)|X0].

� Stationary and time-reversal invariant Markov processes are reflection positive. The converse
is also true: RP Markov processes are time-reversal invariant and stationary.
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