
Lectures on Stochastic quantisation – Milan
Massimiliano Gubinelli

Lecture 3 | 16.2.2021 | 10:00–12:00 via Zoom

Web page: https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021
Recorded lectures: https://uni-bonn.sciebo.de/s/6mTx2gYCfCscfFm

Recall from yesterday:

Definition 1. A real valued continuous stochastic process (Xt)t∈ℝ is RP iff for any bounded func-
tion F:C(ℝ⩾0;ℝ)→ℂ one has

𝔼[F(𝜃X)F(X)]⩾0,

where (𝜃X)t =X−t.

And we saw that among Gaussian processes only linear combitations of OU processes satisfy this
condition and morever that symmetric Markov processes satisfy this condition.
We are going to give a sketch of the reconstruction of the QM data from a symmetric Markov
process.
We consider the complex vector space ℰ+ of cylindrical functions supported on positive times,
i.e. functions of the form

F =�
k

ckei𝜆kX(tk),

for ck ∈ℂ,𝜆k ∈ℝ, tk ⩾0.
�RP endows this space with a Hermitian scalar product

⟨F,G⟩=𝔼[ΘFG], F,G∈ℰ+,

with ΘF =F ∘𝜃. We take the quotient ℰ+\𝒩 where 𝒩 is the subspace of elements in ℰ+ with
zero norm and complete wrt. the scalar product to obtain an Hilbert space ℋ.
�Our algebra of observables C(ℝ,ℂ) acts as multiplication operators i.e. Q(a)F =a(X0)F.
Important observation: the elemens of the from F −𝔼[F|ℱ0] have zero norm.
(Exercise using the Markov property).
In particular for cylinder function

F =�
k

cke i𝜆kX(tk) ≈𝔼[F|X0]=�
k

ck𝔼[ei𝜆kX(tk)|X0]=�
k

ckPtk(ei𝜆k⋅)(X0)

where Pt is the transition operator of the Markov process (Ptf )(x)=𝔼[ f (Xt)|X0 =x].
Moreover we have the natural action of time-translation via t ⩾0: Tt which acts on ℰ+ (since for
example TtXs=Xs+t with s+ t ⩾0 if s, t ⩾0).
Tt is a symmetric operator

⟨F,TtG⟩=𝔼[ΘFTtG]=𝔼[Tt((T−tΘF)G)]=𝔼[(T−tΘF)G]=𝔼[(ΘTtF)G]= ⟨TtF,G⟩

by stationarity of the law and the definition of Θ. This also implies that Tt𝒩⊆𝒩. We want to
show that Tt is contractive. Indeed

⟨TtF,TtF⟩= ⟨F,T2tF⟩⩽ ‖F‖ℋ
1/2‖T2tF‖ℋ

1/2
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and iterating this we have

‖TtF‖ℋ
2 ⩽‖F‖ℋ

1/2‖T2tF‖ℋ
1/2 ⩽ ⋅ ⋅ ⋅ ⩽ ‖F‖1/2+⋅ ⋅ ⋅+1/2n‖T2ntF‖1/2n →‖F‖

since

‖T2ntF‖2 =𝔼[T−2ntΘFT2ntF]⩽(𝔼[|T−2ntΘF|2 ])1/2(𝔼[|T2ntF|2])1/2

=(𝔼[T−2nt|ΘF|2 ])1/2(𝔼[T2nt|F|2])1/2=(𝔼[|ΘF|2 ])1/2(𝔼[|F|2])1/2 <∞

uniformly in t. So we have proved that ‖Tt‖⩽1.
Strong continuity of (Tt)t⩾0 follows then via approximations from weak continuity and from the
fact that the the process X is continuous in distribution (Exercise).
The ground state 𝜑=1∈ℋ, indeed Tt1=1 and this also show that ‖Tt‖=1.
So we have constructed an Hilbert space ℋ, an ∗-homeomorphism Q: C(ℝ, ℂ) → ℬ(ℋ) and
a strongly continuous contraction semigroup (Tt)t⩾0 (from which we can recover a positive
energy unitary group (U(t))t⩾0 and another *-homeomorphism H:C(ℝ⩾0,ℂ)→ℬ(ℋ) such that
H(e−it⋅)=U(t) for t ∈ℝ and H(e−t⋅)=Tt for t ⩾0.

What is this Hilbert space ℋ concretely? By what we saw above we know that we can replace
any vector with its projection onto 𝜎(X0), that is any vector is just a function of X0:

⟨F,G⟩ℋ=𝔼[ΘFG]=𝔼[𝔼[F|X0]𝔼[G|X0]]

=𝔼[ f (X0)g(X0)]=�
ℝ

f (x)g(x)𝜌(dx)=⟨ f ,g⟩L2(ℝ,𝜌)

where 𝜌 is the law of X0 and f ,g are functions so that f (X0)=𝔼[F|X0], g(X0)=𝔼[G|X0].
So ℋ ≈ L2(ℝ, 𝜌) and Q(a) f (x)= a(x) f (x), but the action of Tt is more complicated in this rep-
resentation, indeed (Ttf )= f (Xt) and then Ttf ≈𝔼[ f (Xt)|X0]=(Ptf )(X0) so we have that it acts on
L2(ℝ,𝜌) as a semigroup (K(t))t⩾0

(K(t) f )(x)=(Ptf )(x), x∈ℝ,

indeed

⟨F,TtG⟩ℋ =⟨ f ,K(t)g⟩L2(ℝ,𝜌).

An explicit example
Let's take the OU process, i.e. the centred Gaussian process (Xt)t∈ℝ with covariance

C(t)= e−𝛼|t|

2𝛼

with 𝛼>0. This is a symmetric Markov process, it also solves the SDE

dXt =−𝛼Xtdt +dBt, X0 ∼𝜌≔𝒩(0, (2𝛼)−1)

where B is standard Brownian motion. We can compute its transition function

(K(t) f )(x)=𝔼[ f (Xt)|X0 =x]=𝔼[[[[[[[[[[ f((((((((((e−𝛼tx+((((((((((1− e−2𝛼t

2𝛼 ))))))))))
1/2

Z))))))))))]]]]]]]]]], x∈ℝ, t ⩾0,
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where Z ∼𝒩(0,1). Note that K(t) f →∫ f d𝜌 as t →∞.
In this example I can perform explicitly the construction of U and Q. We can diagonalize K:
Take e𝜆(x)=exp(i𝜆x) then

(K(t)e𝜆)(x)=𝔼[[[[[[[[[[e𝜆((((((((((e−𝛼tx+((((((((((1−e−2𝛼t

2𝛼 ))))))))))
1/2

Z))))))))))]]]]]]]]]]= e𝜆(e−𝛼tx)exp((((((((((−𝜆2

2 ((((((((((1−e−2𝛼t

2𝛼 ))))))))))))))))))))

so if we let ê𝜆(x)=exp(i𝜆x)exp�𝜆2

2
1

2𝛼� we have

K(t)ê𝜆 = ê𝜆e−𝛼t.

By expanding both the l.h.s. and r.h.s in powers of 𝜆 we obtain

�
n⩾0

(i𝜆)n

n! K(t)Hn(x)=(K(t)ê𝜆)(x)= ê𝜆e−𝛼t(x)= �
n⩾0

(i𝜆)n

n! e−𝛼ntHn(x)

where we denoted Hn(x) the coefficients in this expansion (we leave implicit the dependence on
𝛼, Hn(x;𝛼)). So we learn that

K(t)Hn(x)= e−𝛼ntHn(x)

i.e. the Hermite polynomials Hn are eigenfunctions of K(t). They are the coefficients in the series
of

exp(i𝜆x)exp((((((((((𝜆2

2
1

2𝛼))))))))))= �
n⩾0

(i𝜆)n

n! Hn(x).

Since K(t) is symmetric then the Hn are orthogonal and actually a basis for L2(𝜌) since if f ∈
L2(𝜌) such that 0=⟨ f ,Hn⟩ for all n this implies ⟨ f ,e𝜆⟩=0 for all 𝜆∈ℝ (essentially by density and
approximation).
At this point we construct easily both E and U, indeed

E(a)Hn(x)=a(𝛼n)Hn, U(t)Hn =e i𝛼ntHn.

� We have completely solved the QM problem for this model: we have an Hilbert space L2(𝜌), a
representation Q of C(ℝ) given by multiplication operators, a strongly continuous unitary dynam-
ical group (U(t))t∈ℝ and a ground state given by the constant function 1.
Now one see that E(a) only cares about the value of the function a∈C(ℝ⩾0;ℂ) on the set 𝛼ℕ,
so it is actually an homeomorphism from C(𝛼ℕ;ℂ). The quantity E is quantized : can only take
discrete values, moreover E(a) is constant in time: U(t)−1E(a)U(t) = E(a). It is a constant of
motion (of course it is the “energy”).
Exercise: Show that Q(a) and E(b) do not commute for any a,b∈C(ℝ;ℂ).

How we use all this to solve the original problem: i.e. compute results of measurements. Let 𝜔
the state corresponding to the vector 1∈ℋ≈L2(𝜌).

𝜔(𝛼t(a)∗a)=2Re⟨1,U(t)−1Q(a)U(t)Q(a)1⟩=2Re⟨1,Q(a)U(t)Q(a)1⟩

=2Re�
n

ei𝛼tn⟨1,Q(a)Hn⟩⟨Hn,Q(a)1⟩=2Re�
n

ei𝛼tn|⟨Hn,Q(a)1⟩|2.
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So in this system one observes only frequencies of the form 𝛼ℕ.

Perturbations of RP processes
As we have said, it is useful to have a source of RP processes which do not rely on Markovianity
and survive the generalisation to infinite dimensions which we are going to pursue later on.
A convenient way to construct a large class of RP processes is to take Gibbsian perturbations of
a RP process ℙ (ℙ is the law of an RP process with X(𝜔)=𝜔 the canonical process).
With this we mean consider a potential function V : ℝ→ ℝ⩾0 and a new probability measure ℚ
given by

ℚT(d𝜔)= 1
ZT

exp�−�
−T

T
V(Xs(𝜔))ds�ℙ(d𝜔)

with a normalization factor ZT .

Lemma 2. The measure ℚT is reflection positive.

Proof. Take

G=exp�−�
0

T
V(Xs)ds�,

then

ΘG=exp�−�
0

T
V(X−s)ds�=exp�−�

−T

0
V(Xs)ds�

and

exp�−�
−T

T
V(Xs(𝜔))ds�=(ΘG)G=(ΘG)G

then for any F ∈ℰ+ we have

𝔼ℚT[ΘFF]= 1
ZT

𝔼ℙ�ΘFF exp�−�
−T

T
V(Xs(𝜔))ds��

= 1
ZT

𝔼ℙ[ΘFF (ΘG)G]= 1
ZT

𝔼ℙ[Θ(FG)(FG) ]⩾0

since ℙ is RP. □

But now the problem is that ℚT is not stationary (i.e. invariant under translation).

Remark. More “fancy” perturbations, like e.g.

exp�−�
−T

T
�

−T

T
W(Xs(𝜔),Xs′(𝜔))dsds′�

are not in general reflection positive. Note also that to prove RP we used essentially that there is
an integral over time and the multiplicativity of the exponential.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
These lecture notes are produced using the computer program TEXMACS. If you want to know more go here www.texmacs.org.
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