Lectgrgs.on Stochflst@ quantisation — Milan !/“ "" |
Massimiliano Gubinelli \ M

Lecture 3| 16.2.2021 | 10:00-12:00 via Zoom

Web page: https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021

Recorded lectures: https://uni-bonn.sciebo.de/s/6mTx2gY CfCscfFm

Recall from yesterday:

Definition 1. A real valued continuous stochastic process (X;):er is RP iff for any bounded func-
tion F:C(Rs; R) - C one has

E[F(6X)F(X)] >0,
where (0X),=X_,.

And we saw that among Gaussian processes only linear combitations of OU processes satisfy this
condition and morever that symmetric Markov processes satisfy this condition.

We are going to give a sketch of the reconstruction of the QM data from a symmetric Markov
process.

We consider the complex vector space & of cylindrical functions supported on positive times,
i.e. functions of the form

F= Z CkeilkX(tk),
k
for c;,e C, 1 e R, 1, =0.

» RP endows this space with a Hermitian scalar product

(F,G)=E[OFG], F,Ge¥,,
with @F = F o 0. We take the quotient &€, \ /" where /" is the subspace of elements in &, with
zero norm and complete wrt. the scalar product to obtain an Hilbert space 94.
» Our algebra of observables C(R, C) acts as multiplication operators i.e. Q(a)F =a(Xo)F.
Important observation: the elemens of the from F — E[F|%] have zero norm.
(Exercise using the Markov property).

In particular for cylinder function

F=Y ce™ W2 E[FXo]=) cE[e™XW|Xg]=)" cxPy (") (Xo)
k k k

where P; is the transition operator of the Markov process (Pyf) (x) = E[f(X;)|Xo=x].

Moreover we have the natural action of time-translation via ¢ > 0: T; which acts on &, (since for
example T:X;= X, with s+ >0 if 5, >0).

T; is a symmetric operator
(F,T,G)=E[®FT,G]=E|[T,((T-OF) G)] = E[(T_.OF) G] = E[(OT,F) Gl = (T,F,G)

by stationarity of the law and the definition of ®. This also implies that T,/ € /°. We want to
show that 7; is contractive. Indeed

(T,F, T,F) = (F, To,F) <||F|| )2 To:F | 5
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and iterating this we have

2 1/2 1/2 n n
ITiF 156 < IFI 5 TaF 57 < - - < IFIY2 V2 Ton |12 S | F|
since

| TonF|? = B[T-20®F Ton,F] < (E[|T-2n@F 2 1)V 2(E[| TonF?]) /2
=(E[T2n|®OF ) V2(E[Ton|FI))2 = (E[|OF* ) V2(E[IF*])/? < o0

uniformly in 7. So we have proved that |7 < 1.

Strong continuity of (7;),>¢ follows then via approximations from weak continuity and from the
fact that the the process X is continuous in distribution (Exercise).

The ground state ¢ =1 € 96, indeed 7;1 = 1 and this also show that ||T;|| = 1.

So we have constructed an Hilbert space 94, an x-homeomorphism Q: C(R, C) - %B(9¢) and
a strongly continuous contraction semigroup (73);>¢ (from which we can recover a positive
energy unitary group (U(t));>0 and another *-homeomorphism H: C(R »o, C) = %B(96) such that
H(e™™)=U(t) forte R and H(e ") =T, for ¢t > 0.

What is this Hilbert space 36 concretely? By what we saw above we know that we can replace
any vector with its projection onto o (Xp), that is any vector is just a function of Xy:

(F,G)a=E[OFG]=E[E[F|Xo] E[G|Xo]]

=E(f(Xo) ¢(Xo)1 = [, 70} g(0) p () = (£, &) 12,

where p is the law of X, and f, g are functions so that f(Xy) = E[F|Xo], g(Xo) = E[G|Xo].

So % ~L*(R, p) and Q(a)f (x) =a(x)f(x), but the action of 7; is more complicated in this rep-
resentation, indeed (7,f) = f(X;) and then T;f = E[ f(X,)|Xo] = (P{f) (Xp) so we have that it acts on
L*(R, p) as a semigroup (K(t))s0

(K f)x)=(Pf)(x), xR,

indeed

(F,T:G) o= ([, K(1)g) 2R, p)-

An explicit example
Let's take the OU process, i.e. the centred Gaussian process (X;);ecr With covariance

eal

2a

C(t)=

with @ >0. This is a symmetric Markov process, it also solves the SDE
dX,=—aXdt+dB,,  Xo~p:=N(0,2a)”")
where B is standard Brownian motion. We can compute its transition function

1 _e—Zat

1/2
(K(1)f)(x) = E[f (X)X =x] = E[f(e"”H (T) : Z)] xeR, 130,



where Z ~ /°(0,1). Note that K(¢)f - [ fdp as t > co.
In this example I can perform explicitly the construction of U and Q. We can diagonalize K:

Take e (x) =exp(ilx) then

—2at\1/2 2 -2a
(K(t)el)(x):E{el(e'”tx+(1_26(1 t) /Z)]:e;{(e'“’x)exp(—%(l_zea t))

so if we let €, (x )—exp(zlx)exp( Za ) we have

K(t)é, =éje-a.

By expanding both the Lh.s. and r.h.s in powers of 1 we obtain

Z (l:!) K(I)Hn(x):(K(f)é,l)( —ele at ( Z (l —amHn (x)

n=0 ’ n=0

where we denoted H,,(x) the coefficients in this expansion (we leave implicit the dependence on
a, H,(x;a)). So we learn that

K(t)Hy(x) = e™"""Hy(x)

i.e. the Hermite polynomials H,, are eigenfunctions of K(¢). They are the coefficients in the series
of

2 fq 0\
exp(ilx)exp(é 21(1) = Z (id) Hy(x).
n=0

n!

Since K(t) is symmetric then the H, are orthogonal and actually a basis for Lz(p) since if f e
L% p) such that 0= (f, H,) for all n this implies (f,e,)=0 for all A € R (essentially by density and
approximation).

At this point we construct easily both £ and U, indeed
E(a)H,(x)=a(an)H,, U(t)aneiamHn.

» We have completely solved the QM problem for this model: we have an Hilbert space L(p), a
representation Q of C(R) given by multiplication operators, a strongly continuous unitary dynam-
ical group (U(¢));eRr and a ground state given by the constant function 1.

Now one see that E(a) only cares about the value of the function a € C(R¢; C) on the set aN,
so it is actually an homeomorphism from C(aN; C). The quantity E is quantized : can only take
discrete values, moreover E(a) is constant in time: U(¢)"'E(a)U(t) = E(a). It is a constant of
motion (of course it is the “energy”).

Exercise: Show that Q(a) and E (b) do not commute for any a,be C(R;C).

How we use all this to solve the original problem: i.e. compute results of measurements. Let @
the state corresponding to the vector 1 € 96 =~ L?(p).

(a,(a)*a)=2Re(1,U(t)"'Q(a) U(1)Q(a) 1) =2Re(1,Q(a) U(1)Q(a) 1)

—2Rez “I"(1,Q(a) Hy)(H,, Q(a)1) =2Re ) e'“"|(H,, Q(a) 1)



So in this system one observes only frequencies of the form aN.

Perturbations of RP processes

As we have said, it is useful to have a source of RP processes which do not rely on Markovianity
and survive the generalisation to infinite dimensions which we are going to pursue later on.

A convenient way to construct a large class of RP processes is to take Gibbsian perturbations of
a RP process P (P is the law of an RP process with X(w) = w the canonical process).

With this we mean consider a potential function V: R - R and a new probability measure Q
given by

(2 T du) = _1 exp - ‘/ X dAS ]P) d
Wlth a normalization faCtOI‘ Z] .

Lemma 2. The measure Q1 is reflection positive.

Proof. Take
G= exp(—for V(Xs)ds>,
then

0G= exp(-foT V(X_S)ds) - exp(-f_OT V(Xs)ds)

and

exp(—f_TTV(Xs(w))ds)=(®G)G:(® )G

then for any F € €, we have

Eq,[OFF] =ZLTEP[GFFexp(—f_TT V(Xs(a)))ds>]

—Ep[@FF (8C)G) =—Ep[O(FG) (FG) ] 20
Zr Zr
since P is RP. o
But now the problem is that Q7 is not stationary (i.e. invariant under translation).

Remark. More “fancy” perturbations, like e.g.

exp(—f_TT f_TT W(Xs(a)),Xs/(a)))dsds')

are not in general reflection positive. Note also that to prove RP we used essentially that there is
an integral over time and the multiplicativity of the exponential.

These lecture notes are produced using the computer program TgXyacs. If you want to know more go here www . texmacs.org.
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