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Web page: https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021
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Interacting Euclidean Quantum Fields?

Last time we saw the example of the Gaussian free field (GFF) 𝜑:ℝd →ℝ, which is the Gaussian
EQFT (i.e. RP and Euclidean invariant) with covariance

𝔼[𝜑(x)𝜑(y)]=�
ℝd

eik⋅(x−y)

k2+m2 dk.

understood in a distributional sense (more details next week).

What about non-Gaussian examples. We can try the perturbation approach of the last lectures.
We know already that if I call 𝜇 the law of the GFF then I hope to be able to introduce a new RP
measure as follows

𝜈L(d𝜑)= 1
ZL

exp�−�
−L

L
Ṽ(𝜑(x1, ⋅))dx1�𝜇(d𝜑)

where x1 ∈ ℝ is the Euclidean time and Ṽ : ℝℝd−1 → ℝ. But in this way I completely break the
Euclidean invariance, so I need a more “symmetric” way to introduce the perturbation, which
looks like the above in each coordinate, and therefore in is lead to consider the perturbation

𝜈L(d𝜑)= 1
ZL

exp�−�
[−L,L]d

V(𝜑(x))dx�𝜇(d𝜑) (1)

where now V :ℝ→ℝ. This has the form above in every coordinate.

�Of course we broke the translation invariance and also rotation invariance since the integration
domain Λ = [−L, L]d has no such symmetries. Is clear that we cannot take Λ = ℝd because
otherwise the above expression does make sense anymore.

�Moreover we still have the problem that 𝜑(x) really does not make sense unless d =1, indeed we
will see that 𝜑 is only a random distribution i.e. a random element of 𝒮′(ℝd) for d ⩾2. Actually
its regularity degrades with the space dimension d.

�We will also have the problem of understanding what is V(𝜑(x)), i.e. a non-linear function of
a distribution.

In order to give a meaning to (1) we can regularize the expression V(𝜑(x)) by smoothing out
𝜑, i.e. we choose a smooth function 𝜌:ℝd →ℝ (e.g. compactly supported) and such that letting
𝜌𝜀(x)≔𝜀−d𝜌(𝜀−1x) we can define

𝜑𝜀(x)=(𝜌𝜀 ∗𝜑)(x)=�
ℝd

𝜌𝜀(x− y)𝜑(y)dy,
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which is now a well-defined smooth Gaussian field with covariance

𝔼[𝜑𝜀(x)𝜑𝜀(y)]=�
ℝd

|𝜌̂(𝜀k)|2e ik⋅(x−y)

k2 +m2 dk

which is now given by a convergent integral since 𝜌̂ (the Fourier transform or 𝜌) has rapid decay.
So now we can define V(𝜑𝜀(x)) and also a new measure

𝜈𝜀,L(d𝜑)= 1
Z𝜀,L

exp�−�
[−L,L]d

V(𝜑𝜀(x))dx�𝜇(d𝜑). (2)

This approach is ok for getting some results but is not the one we will use. One of the problem is
that this measure is not anymore RP (exercise: think why).
One can still arrange to smooth only d − 1 directions and use RP in the remaining direction, this
would be fine.
In the rest of these lectures I rather use another approach which preserves both RP and Euclidean
invariance (or at least good approximations of them).

Let 𝜀=2−N and M =2N ′. Let Λ𝜀 =(𝜀ℤ)d ⊆ℝd the square lattice in dimension d of side lenght 𝜀,
Λ𝜀,M =Λ𝜀∩𝕋M

d =(𝜀ℤ)d ∩[−M/2,M/2)d a finite box of (M/𝜀+1)d points which we think with
periodic boundary conditions in every directions.
We are going to discretize our problem on this domain, i.e. replace [−L,L]d with Λ𝜀,M.
Some useful notation: Fourier tranform on Λ𝜀 is defined as

ℱ𝜀f (x)=𝜀d �
x∈Λ𝜀

f (x)e−2𝜋ik⋅x, ℱ𝜀
−1g(x)=�

Λ̂𝜀
g(k)e2𝜋ik⋅xdk,

with Λ̂𝜀 =(𝜀−1[−1,1))d the dual of Λ𝜀. These definitions can be extended to the finite lattice in a
natural way, with Λ̂𝜀,M =((ℤ/M)∩[−𝜀−1/2,𝜀−1/2))d ≈ΛM−1,𝜀−1 and

ℱ𝜀,Mf (x)=𝜀d �
x∈Λ𝜀,M

f (x)e−2𝜋ik⋅x, ℱ𝜀,M
−1 g(x)= 1

Ld �
k∈Λ̂𝜀,M

g(k)e2𝜋ik⋅x.

The measure 𝜇𝜀,M is the law of a family of Gaussian r.v. (𝜑𝜀,M(x))x∈Λ𝜀,M with covariance

𝔼𝜇[𝜑𝜀,M(x)𝜑𝜀,M(y)]=(m2 −Δ𝜀)−1(x,y), x,y∈Λ𝜀,M

where Δ𝜀,M is the discrete Laplacian with periodic boundary conditions, i.e.

Δ𝜀f (x)=𝜀−2 �
i=1, . . . ,d

( f (x+𝜀ei)−2 f (x)+ f (x−𝜀ei)), x∈Λ𝜀,M

where (ei)i=1,. . . . ,d is the canonical basis of ℝd. We introduce also discrete derivatives

∇𝜀
if (x)= f (x+𝜀ei)− f (x)

𝜀 , ∇𝜀
−,if (x)= f (x)− f (x−𝜀ei)

𝜀

and note that (∇𝜀
i)∗ =−∇𝜀

−,i and Δ𝜀 =∑i=1
d ∇𝜀

−,i∇𝜀
i. Moreover

(∇𝜀
iℱ−1g)(x)=�

Λ̂𝜀
g(k)e2𝜋i𝜀ki −1

𝜀 e2𝜋ik⋅xdk
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(∇𝜀
−,i∇𝜀

iℱ−1g)(x)=�
Λ̂𝜀

g(k)e2𝜋i𝜀ki −1
𝜀

1− e−2𝜋i𝜀ki

𝜀 e2𝜋ik⋅xdk

=−�
Λ̂𝜀

g(k)(2𝜀−1sin(𝜋𝜀ki))2e2𝜋ik⋅xdk.

A Fourier transform formula for the correlation function reads

(m2−Δ𝜀)−1(x,y)≔ 1
Md �

k∈((ℤ/M)∩[−𝜀−1,𝜀−1))d|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
≈∫

ℝd

eik⋅(x−y)

(m2 +∑i (2𝜀−1sin(𝜋𝜀ki))2)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
≈k2+m2

, x,y∈Λ𝜀,M.

So 𝜑𝜀,M is an approximation of the GFF 𝜑. We denote 𝜇𝜀,M its law, note that it is a law on ℝΛ𝜀,M

which is a finite dimensional space. By abuse of notation I will also consider it as a measure on
ℝΛ𝜀 by periodic extension.
Both our discrete versions of translation invariance and RP will converge nicely to their con-
tinuum counterpart.

�Finally define the measure 𝜈𝜀,M on ℝΛ𝜀,M (or by extension on ℝΛ𝜀)

𝜈𝜀,M(𝜑)= 1
Z𝜀,M

exp((((((((((((((−𝜀d �
x∈Λ𝜀,M

V(𝜑(x))))))))))))))))𝜇𝜀,M(d𝜑) (3)

for some V :ℝ→ℝ bounded below.

Exercise. Prove that if V (𝜑)=𝛽𝜑2 and 𝛽>−m2 then we get another GFF with a different mass.

This approximation now is elementary and it has the advantage that it preserves discrete transla-
tion invariance wrt. the lattice Λ𝜀 and moreover a discrete and periodic version of RP.
Reference for discrete RP: S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A
Concrete Mathematical Introduction (Cambridge, United Kingdom; New York, NY: Cambridge
University Press, 2017).
�Both our discrete versions of translation invariance and RP will converge nicely to their con-
tinuum counterpart as 𝜀→0 (to get rid of discreteness) and M →∞ (to get rid of periodicity).

The rest of the lectures will concern the analysis of these measures in order to prove the existence
of the limits above.

What is a proper choice of V? Any V (non-quadratic) is ok, as soon as it works. The problem
is that not so many choices are available. In d = 1 one could take any V ∈ C(ℝ, ℝ+) (or even
unbounded with some conditions). In d = 2 one can take polynomial functions, exponential,
trigonometric functions. In d =3 we know only how to take V a fourth order polynomial bounded
below, in this case we say we are looking at Φ3

4.

Definition 1. A Φ3
4 measure is any non-Gaussian, Euclidean invariant and RP accumulation

point of the family (𝜈𝜀,M)𝜀,M as 𝜀 → 0 and M → ∞ where one can take as V any 4-th order
polinomial, bounded below and with 𝜀,M dependent coefficient.
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One of the big successes of constructive EQFT in '70,'80 is the proof that this limits exists and has
many nice properties. It was proven by Glimm, Jaffe, Feldman, Osterwalder, Seneor, . . .
For 𝜀 fixed and M → ∞ this is a problem of statistical mechanics: the infinite volume limit of a
system of unbounded spins with nearest neighbor interaction.

(this ends the first part of the course, i.e. the passage QM to EQFT and the formulation of our
main problem)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Second part of the lectures: Stochastic quantisation

As I said at the beginning a stochastic quantisation (in these lectures) of a given measure 𝜌 is a
map F𝜌 which sends a Gaussian r.v. to a r.v. with law 𝜌.
Even in the case 𝜈𝜀,M there are many interesting ways to do this.

1. Langevin dynamics / parabolic SQ: the Gaussian process W is a family of Brownian
motions and the map 𝜈∼F𝜈(W)=𝜙(0) is given by the stationary solution

𝜙:ℝ×Λ𝜀,M →ℝ,

of the SDE

d𝜙(t,x)={[(−m2+Δ𝜀)𝜙(t)](x)−V ′(𝜙(t,x))}dt +dW(t,x), x∈Λ𝜀,M, t ∈ℝ

with V ′ the derivative of V . Here t ∈ℝ is a fictious time (it is not the Euclidean time!!!)

2. Elliptic SQ: 𝜈∼ F𝜈(𝜉)= (𝜙(0, x))x∈Λ𝜀,M but now 𝜙:ℝ2 ×Λ𝜀,M → ℝ is the solution to the
elliptic PDE

(m2−Δℝ2 −ΔΛ𝜀,M)𝜙(z,x)+V ′(𝜙(z,x))=𝜉(z,x), x∈Λ𝜀,M, z∈ℝ2

where 𝜉 is a space-time white noise.

3. Canonical SQ: the Gaussian process W is a family of Brownian motions and the map
𝜈∼F𝜈(W)=𝜙(0) is given by the stationary solution

𝜙:ℝ×Λ𝜀,M →ℝ

of the SDE (discrete wave equation)

∂t
2𝜙(t,x)=−𝛾∂t𝜙(t,x)+[(−m2 +Δ𝜀)𝜙(t)](x)−V ′(𝜙(t,x))+∂tW(t,x)

(approximatively). Without noise this is an Hamiltonian equation.

4. Variational representation (see Barashkov/G.)

5. There is even another possible approach which require to consider a stochastic evolution
in the Euclidean time and looks like

∂x0𝜙={−(m2 −Δ𝜀)1/2𝜙−V ′(𝜙)}dt +∂x0W , x∈ℝ×Λ𝜀,M
d−1

4



in this case we cannot discretize the Euclidan time and also the measure 𝜈𝜀,M has to be
taken slightly differently. This is essentially the Markovian point of view wrt. the EQFT
where we perturb the OU process 𝜙 with a drift −V ′(𝜙).

Remark. While the measure 𝜈𝜀,M is defined via a density wrt. to a Gaussian the goal of SQ
is to define it as the pushforward of a Gaussian measure. In infinite dimensions it seems that
pushforward are more robust.

Example. Let (Bt)t⩾0 a one dim BM and let Xt =Bt + t. Then while there is no problem to see the
law of X as pushforward of that of B, they are not absolutely continuous.

Exercise. Prove it.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
These lecture notes are produced using the computer program TEXMACS. If you want to know more go here www.texmacs.org.
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