
Lectures on stochastic quantisation – Milan
Massimiliano Gubinelli

Lecture 6 | 18.2.2021 | 14:00–16:00 via Zoom

Web page: https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021
Recorded lectures: https://uni-bonn.sciebo.de/s/6mTx2gYCfCscfFm

Some notations from this morning.
The measure 𝜇𝜀,M is the law of a family of Gaussian r.v. (𝜑𝜀,M(x))x∈Λ𝜀,M with covariance

𝔼𝜇[𝜑𝜀,M(x)𝜑𝜀,M(y)]=(m2 −Δ𝜀)−1(x,y), x,y∈Λ𝜀,M

The measure 𝜈𝜀,M on ℝΛ𝜀,M (or by extension on ℝΛ𝜀) is defined as

𝜈𝜀,M(𝜑)= 1
Z𝜀,M

exp((((((((((((((−𝜀d �
x∈Λ𝜀,M

V(𝜑(x))))))))))))))))𝜇𝜀,M(d𝜑) (1)

for some V :ℝ→ℝ bounded below. We will soon take V(𝜑)=𝜆𝜑4 +𝛽𝜑2 with 𝜆>0 and 𝛽∈ℝ
(or just 𝛽=0).

References: stochastic quantisation was introduced Nelson, Parisi & Wu. Rigorous construc-
tion of EQFT with stochastic quantisation was done in d = 1 by Jona–Lasinio and Faris ('80),
Jona–Lasinio and Mitter (~'84) in d =2 bounded volume and then Mitter et al. in infinite volume,
this was done using probabilistic tools (martingale problems and Girsanov's formula). For P(Φ)2
(polynomial interaction in d = 2) another approach was introduced by Da Prato and Debussche.
Only in 2013 Hairer managed to prove a local existence and uniqueness result for the parabolic
SQ of Φ3

4 using regularity structures. And the we had many more results . . . still many prob-
lems remain open.
For more details on the history of EQFT and SQ look at the introductions of these three papers:

• M. Gubinelli and M. Hofmanova, `A PDE Construction of the Euclidean Φ3
4 Quantum Field

Theory', ArXiv:1810.01700 [Math-Ph], 3 October 2018, http://arxiv.org/abs/1810.01700.

• S. Albeverio, F. C. De Vecchi, and Massimiliano Gubinelli, `Elliptic Stochastic Quantiza-
tion', Annals of Probability 48, no. 4 (July 2020): 1693–1741, https://doi.org/10.1214/19-
AOP1404.

• S. Albeverio et al., `Grassmannian Stochastic Analysis and the Stochastic Quan-
tization of Euclidean Fermions', ArXiv:2004.09637 [Math-Ph], 25 May 2020,
http://arxiv.org/abs/2004.09637.

For hyperbolic SQ and the variational method one could refer to

• M. Gubinelli, H. Koch, and T. Oh, `Renormalization of the Two-Dimensional Stochastic
Nonlinear Wave Equations', Transactions of the American Mathematical Society, 2018, 1,
https://doi.org/10.1090/tran/7452.

• N. Barashkov and M. Gubinelli, `A Variational Method for Φ3
4 ', Duke Mathematical

Journal 169, no. 17 (November 2020): 3339–3415, https://doi.org/10.1215/00127094-
2020-0029.
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Langevin dynamics
We start by constructing the parabolic stochastic quantisation of the measure 𝜈𝜀,M for fixed 𝜀,M.
Since in this section these parameters do not play any role we will avoid to write the whenever it
does not lead to ambiguities. In particular here Λ will denote the finite set Λ𝜀,M and Δ the discrete
Laplacian.

The law 𝜇𝜀,M is Gaussian, we can therefore introduce a fictious time t ∈ ℝ (this is !not! the
physical time) and a stationary OU process (Xt

𝜀,M)t⩾0 such that Xt
𝜀,M ∼𝜇𝜀,M. There is not a unique

choice, however it is not difficult to guess that a suitable dynamics is given by

dXt
𝜀,M =(Δ𝜀 −m2)Xt

𝜀,Mdt +21/2dBt
𝜀,M, (2)

where (Bt
𝜀,M(x))x∈Λ𝜀,M is a family of independent standard Brownian motions.

Exercise. Check the invariance of 𝜇𝜀,M under this dynamics, in particular pay attention to the normalization.

I want to construct now a dynamics which leave invariant the measure 𝜈𝜀,M instead.
Let us guess what this dynamics shoud be: we write something similar as what we had before but
with an unknown vectorfield F(t)

dXt = AXtdt +F(t)dt +21/2dBt.

with A=(Δ−m2). Then if we denote ℙ the law of the solution X of this equation with X0 ∼𝜇𝜀,M

and independent B, we want to have

�
ℝΛ

f (𝜑)𝜈(d𝜑)=�
ℝΛ

f (𝜑)e−U(𝜑)

Z 𝜇(d𝜑)= 1
Z𝔼[ f (X0)e−U(X0)]= 1

Z𝔼[ f (Xt)e−U(X0)],

for all test functions f and all t ⩾0 with

U(𝜑)=𝜀d �
x∈Λ𝜀,M

V(𝜑(x)), U:ℝΛ𝜀,M →ℝ.

Note that under the measure ℙU defined as

ℙU(dX)= e−U(X0)

Z ℙ(dX)

the process X is still solution to the equation and X0 ∼𝜈𝜀,M.
� By Girsanov's formula, we have, for two test functions f ,g

𝔼[ f (Xt)e−U(X0)g(X0)]=𝔼ℚ� f (Xt)e∫0
tF(s)21/2dWs−∫0

t|F(s)|2ds−U(X0)g(X0)� (3)

where under ℚ the process X satisfy the linear SDE

dXt = AXtdt +21/2dWt

where W is a BM under ℚ. Note that X0∼𝜇. So under ℚ X is an stationary OU process.
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Note that Ito formula gives

U(Xt)=U(X0)+�
0

t
DU(Xs)dXs +�

0

t
D2U(Xs)ds

=U(X0)+�
0

t
DU(Xs)21/2dWs +�

0

t
(D2U(Xs)+DU(Xs)AXs)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

≔Q(Xs)

ds

so we can rewrite (3) as

=𝔼ℚ� f (Xt)g(X0)e
−1

2U(Xt)− 1
2U(X0)+ 1

2∫0
t(Q(Xs)ds−|F(s)|2)dse∫0

tF(s)21/2dWs+ 1
2∫0

tDU(Xs)21/2dWs�

and then take F(s)=−1
2DU(Xs) to cancel the stochastic integral in the exponent to get

𝔼[ f (Xt)e−U(X0)g(X0)]=𝔼ℚ� f (Xt)g(X0)e
−1

2U(Xt)− 1
2U(X0)+ 1

2∫0
t�Q(Xs)ds− 1

4 |DU(Xs)|2�ds�

and since ℚ is time reflection invariant (because under ℚ the process X is just a stationary OU
process) we can rewrite this as

=𝔼ℚ� f (X0)g(Xt)e
−1

2U(Xt)− 1
2U(X0)+ 1

2∫0
t�Q(Xs)ds− 1

4 |DU(Xs)|2�ds�

where we exchanged the two functions. Taking f =1 we have

𝔼ℚ�g(Xt)e
−1

2U(Xt)− 1
2U(X0)+ 1

2∫0
t�Q(Xs)ds− 1

4 |DU(Xs)|2�ds�=𝔼[e−U(X0)g(X0)]

and on the other hand, taking g=1 we have (taking g= f in the previous formula)

𝔼[ f (Xt)e−U(X0)]=𝔼ℚ� f (Xt)e
−1

2U(Xt)− 1
2U(X0)+ 1

2∫0
t�Q(Xs)ds− 1

4 |DU(Xs)|2�ds�=𝔼[e−U(X0)f (X0)]

that is what we were looking for.

Remark. All this is ok provided we can perform all these computations. The only problems are
related to the integrability of the exponential function involving the time integral. For example if
we require that U is bounded below and moreover that

H(𝜑)= 1
2Q(𝜑)− 1

8|∇U(𝜑)|2 =D2U(𝜑)+DU(𝜑)⋅ A𝜑− |DU(𝜑)|2

satisfies

𝔼ℚ�e∫0
tH(Xs)ds�<∞,

for some t >0. Indeed it is enough to establish invariance for small time and the for all times.

�We learned that the solution to

dXt = AXtdt − 1
2DU(Xt)dt +21/2dBt (4)

leaves the measure 𝜈(d𝜑)=Z −1e−U(𝜑)𝜇(d𝜑) invariant provided U is nice enough.
We will take this equation as stochastic quantisation.

Exercise. Note that the process X is time-reversal invariant (we essentially gave a proof of this above, you can fill
in the details).
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We would actually like to have U which are unbounded, but bounded below, the relevant example
in these lectures being

U(𝜑)=𝜀d�
x

�𝜆
4 𝜑(x)4 + 𝛽

2 𝜑(x)2�

for some 𝜆>0 and 𝛽∈ℝ.
We have two order of problems with such potentials. First

DxU(𝜑)= ∂
∂𝜑(x)U(𝜑)=𝜆𝜑(x)3 +𝛽𝜑(x)

is not globally Lipschitz and the solutions to the SDE (4) could explode in finite time.
Then we still have to worry about invariance (i.e. fixing the details of the argument above) of the
measure 𝜈 on this dynamics.
The second problem is merely technical and could be handled via a careful control of approxima-
tions with nice U and the above invariance argument. The first problem seems more worrisome
but the key is to exploit the coercivity of the dynamics.

First method: one could use the invariance of the measure 𝜈 to conclude that solutions of the SDE
do not explode, we will not do it here.
Second method: A direct approach is to test the equation with Xt, i.e. write by Ito formula

1
2dt�

x
|Xt(x)|2=�

x
Xt(x)dXt(x)+�

x
dt

=�
x

�Xt(x)(AXt)(x)− 1
2Xt(x)DxU(Xt)�dt +21/2�

x
Xt(x)dBt(x)+�

x
dt

=−G(Xt)dt +𝛽�
x

Xt(x)2dt +21/2�
x

Xt(x)dBt(x)+�
x

dt

with in the polynomial case (summing by parts the Laplacian)

G(𝜑)=�
x

(|∇𝜀𝜑(x)|2+m2𝜑(x)2+𝜆𝜑(x)4)⩾0.

By taking averages we could get some interesting estimates, for example

𝔼�
x

|Xt(x)|2 +�
0

t
G(Xs)ds=𝛽�

0

t
𝔼�

x
Xs(x)2ds+�

x
dt,

where now the r.h.s. can be controlled via the l.h.s. or via Gronwall lemma.
But this is not robust enough for what is going on next week.

Third and last method: a more elementary and useful in the following approach which do not rely
on Ito's formula goes as follows (this essentially what is called the Da Prato–Debussche trick).
First one write X =Y +Z where Y is the solution to the linear equation

dYt = AYtdt +21/2dBt

4



that is an OU process, and Z is what remains.
Then Z must solve

dZt
dt =(AZt −∇U(Yt +Zt))

which is an ODE with random coefficients, not a stochastic differential equation anymore since
the effect of the Brownian perturbation is completely taken into account by Y .

We can now test this equation with Z (without the need of Ito's formula) and obtain

1
2

d
dt�

x
|Zt(x)|2 +G(Zt)=−𝜆�

x
(Yt(x)3Zt(x)+3Yt(x)2Zt(x)2 +3Yt(x)Zt(x)3)

+𝛽�
x

(Zt(x)Yt(x)+Zt(x)2)

where

G(𝜑)=‖∇𝜑‖L2
2 +m2‖𝜑‖L2

2 +𝜆‖𝜑‖L4
4

with the natural Lebesgue spaces on Λ=Λ𝜀,M (with counting measure).
The key property being that in the r.h.s. we have all terms which we can bound via Hölder
inequality as

d
dt�

x
|Zt(x)|2+G(Zt)⩽C𝛿‖Yt‖L4

4 +𝛿G(Zt)

for 𝛿>0 small as we wish, e.g. 𝛿=1/2. We conclude that

‖Zt‖L2
2 + 1

2�
0

t
G(Zs)ds⩽‖Z0‖L2

2 +C�
0

t
‖Ys‖L4

4 ds. (5)

This bound implies that solutions cannot explode and we have an explicit bound on its growth in
term of Y and Z0. Of the two we know very well Y (it is the OU process, it is Gaussian, I know
everything I want on it). On the other hand I do not know so well

Z0=X0−Y0 ∼“𝜈−𝜇”

because we do not really know very well 𝜈 (which is actually the object we want to study). For
example we do not know estimates uniform in 𝜀,M.
Note that even if X is stationary and Y is stationary (because we take X0 ∼ 𝜈 and Y0 ∼ 𝜇 and
independent). But they are not indenepend and more importantly Z is not stationary.
One would like to prove that there exists a coupling of X0 and Y0 (i.e. find a joint law with mar-
ginals 𝜈 and 𝜇 respectively) so that the process (X,Y) is stationary (as a pair) from which would
follow that Z is stationary.

In any case what we have so far is that for any f and any t we have

� f (𝜑)𝜈(d𝜙)=𝔼[ f (Xt)]= 1
t �

0

t
𝔼[ f (Xs)]ds==1

t �
0

t
𝔼[ f (Ys+Zs)]ds

using stationarity. This is the stochastic quantization equation. Estimates on X are given via Y
and Z .

5



Let's construct a stationary coupling of Y and Z . One uses the Krylov-Bogoliubov argument. We
can construct a measure 𝛾T on a pair of fields (𝜑,𝜓)∈ℝΛ ×ℝΛ by the formula

� f (𝜑,𝜓)d𝛾T(𝜑,𝜓)≔ 1
T�

0

T
𝔼[ f (Ys,Zs)]ds,

for any bounded function f of the pair (𝜑,𝜓)∈ℝΛ ×ℝΛ where Y ,Z are started as above.
We have that

� [G(𝜓)+‖𝜑‖L4
4 ]d𝛾T(𝜑,𝜓)= 1

T�
0

T
𝔼[G(Zs)+ ‖Ys‖L4

4 ]ds⩽ 2
T�𝔼‖Z0‖L2

2 +C′�
0

T
𝔼‖Ys‖L4

4 ds�,

⩽�2
T𝔼‖Z0‖L2

2 �+2C′𝔼‖Y0‖L4
4 ,

which is uniformly bounded in T . This implies that the family (𝛾T)T is tight on ℝΛ ×ℝΛ and one
can extract a weakly convergent subsequence to a limit 𝛾.
Note also that

� f (𝜑+𝜓)d𝛾T(𝜑,𝜓)= 1
T�

0

T
𝔼[ f (Ys +Zs)]ds= 1

T�
0

T
𝔼[ f (Xs)]ds=𝔼[ f (X0)]=� f (𝜑)𝜈(d𝜙)

Therefore the law of 𝜑 +𝜓 under 𝛾T is always given by 𝜈 for any T . As a consequence the law
of 𝜑+𝜓 under 𝛾 is 𝜈.
The measure 𝛾 is stationary under the joint dynamics of (Z ,Y), i.e. if (Z0,Y0)∼𝛾 then (Zt,Yt)∼𝛾.

Exercise. Prove it. Also try to understand if the dynamics of the pair is time-symmetric.

In this way one can construct a stationary coupling of (Z ,Y) which gives a useful representation
of the stationary process X.

Infinite volume limit
What happens when we want to take the limit M → ∞? The estimate (5) is not good enough
because both ‖Z0‖L2(Λ𝜀,M) and ‖Ys‖L4(Λ𝜀,M) cannot remain finite since both random field are sta-
tionary and one expects that

‖Z0‖L2(Λ𝜀,M) ∼Md, ‖Ys‖L4(Λ𝜀,M) ∼Md.

In this section we explicit the dependence on M and use Λ𝜀 for the full lattice. Moreover we
extend any periodic field to the full lattice periodically. (we fix an origin)

However we can modify our apriori estimate introducing a polynomial weight 𝜌:Λ=(𝜀ℤ)d →ℝ

𝜌(x)=(1+ ℓ |x|)−𝜎

with ℓ ,𝜎>0 large enough, where |x| is the distance from the origin of Λ=Λ𝜀.
Now we test the equation for Z with 𝜌2 Z summing over the full lattice Λ and we get

1
2

d
dt �

x∈Λ𝜀

|𝜌(x)Zt(x)|2 +G(Zt)⩽−𝜆 �
x∈Λ𝜀

𝜌(x)(Yt(x)3Zt(x)+3Yt(x)2Zt(x)2+3Yt(x)Zt(x)3)

+𝛽 �
x∈Λ𝜀

𝜌(x)(Zt(x)Yt(x)+Zt(x)2)+C𝜌 �
x∈Λ𝜀

𝜌(x)Zt(x)2
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where C𝜌 (and the inequality) is term coming from the integration by parts which can be made
small by choosing ℓ small and where

G(𝜑)=‖𝜌∇𝜑‖L2(Λ𝜀)
2 +m2‖𝜌𝜑‖L2(Λ𝜀)

2 +𝜆‖𝜌1/2𝜑‖L4(Λ𝜀)
4 .

And using similar estimates as above we obtain the apriori weighted estimates:

d
dt‖𝜌Zt‖L2(Λ𝜀)

2 +G(Zt)⩽C𝛿‖𝜌1/2Yt‖L4(Λ𝜀)
4 +𝛿G(Zt)

indeed

𝜆||||||||||||||| �
x∈Λ𝜀

𝜌(x)Yt(x)3Zt(x)|||||||||||||||⩽𝜆||||||||||||||| �
x∈Λ𝜀

(𝜌(x)3/2Yt(x)3)(𝜌(x)1/2Zt(x))|||||||||||||||

⩽𝜆C
𝛿‖𝜌1/2Yt‖L4

4 +𝛿𝜆‖𝜌1/2Zt‖L4
4 ⩽𝜆C

𝛿‖𝜌1/2Yt‖L4
4 +𝛿G(Zt)

for any small 𝛿>0.
As a consequence one get the estimate

‖𝜌Zt‖L2(Λ)
2 + 1

2�
0

t
G(Zs)ds⩽‖𝜌Z0‖L2(Λ)

2 +C�
0

t
‖𝜌1/2Ys‖L4(Λ)

4 ds. (6)

We have seen that we can construct a statiorary coupling of (Y , Z), so we can use there this
stationary coupling and take the average of this inequality to get

𝔼‖𝜌Zt‖L2(Λ)
2 + 1

2�
0

t
𝔼G(Zs)ds⩽𝔼‖𝜌Z0‖L2(Λ)

2 +C�
0

t
𝔼‖𝜌1/2Ys‖L4(Λ)

4 ds

but by stationarity we also have 𝔼‖𝜌Zt‖L2(Λ)
2 =𝔼‖𝜌Z0‖L2(Λ)

2 so the initial condition disappear!!!
So

1
2�

0

t
𝔼G(Zs)ds⩽C�

0

t
𝔼‖𝜌1/2Ys‖L4(Λ)

4 ds

and again by stationarity one get

𝔼G(Z0)⩽2C𝔼‖𝜌1/2Y0‖L4(Λ)
4 .

Which give us very good apriori estimates on the law of Z0 which are independent of M, indeed

𝔼‖𝜌1/2Y0‖L4(Λ)
4 =𝔼 �

x∈Λ𝜀

𝜌(x)2|Y0(x)|4 = �
x∈Λ𝜀

𝜌(x)2𝔼|Y0(x)|4=C �
x∈Λ𝜀

𝜌(x)2 <∞

uniformly in M provided 𝜎>d and the law of Y0(x) is translation invariant so does not depend on
x and actually one can easily show that

(𝔼|Y0(x)|4)1/2⩽C𝔼|Y0(x)|2

≲(m2−Δ)−1(x,x)≲ 1
Md �

k∈((ℤ/M)∩[−𝜀−1,𝜀−1))d

1
(m2 +∑i (2𝜀−1sin(𝜋𝜀ki))2)

→�
[−𝜀−1,𝜀−1)d

1
(m2+∑i (2𝜀−1sin(𝜋𝜀ki))2)

<+∞
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uniformly in M.

Lemma 1. For any M >0 we have that 𝜈M ∼X0
M ∼Y0

M +Z0
M where Y0

M ∼𝜇M and Z0
M is a r.v. such

that

sup
M

𝔼G(Z0
M)<∞.

This is a key estimate to take the infinite volume limit since it allows to use tightness on the family
(𝜈M)M in the topology of local convergence.
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