
Lectures on stochastic quantisation – Milan
Massimiliano Gubinelli

Lecture 7 | 22.2.2021 | 10:00–12:00 via Zoom

Web page: https://www.iam.uni-bonn.de/abteilung-gubinelli/sq-lectures-milan-ws2021
Recorded lectures: https://uni-bonn.sciebo.de/s/6mTx2gYCfCscfFm

Some notions from last week.
We have a measure 𝜇𝜀,M given by the law of a family of Gaussian r.v. (𝜑𝜀,M(x))x∈Λ𝜀,M with
covariance

𝔼𝜇[𝜑𝜀,M(x)𝜑𝜀,M(y)]=(m2 −Δ𝜀)−1(x,y), x,y∈Λ𝜀,M

We introduced a “perturbed” measure 𝜈𝜀,M on ℝΛ𝜀,M (or by extension on ℝΛ𝜀) is defined as

𝜈𝜀,M(𝜑)= 1
Z𝜀,M

exp((((((((((((((−𝜀d �
x∈Λ𝜀,M

V(𝜑(x))))))))))))))))𝜇𝜀,M(d𝜑) (1)

for some V :ℝ→ℝ bounded below. We will take often

V(𝜑)=𝜆𝜑4 +𝛽𝜑2

with 𝜆>0 and 𝛽∈ℝ (or just 𝛽=0).

Remember that as long as 𝜀>0 the quantity (m2−Δ𝜀)−1(x,y) is bounded (it is a finite sum).
Last week we was how to take the infinite volume limit: better, how to obtain the suitable weighted
estimates which are uniform in M and allow to prove tightness of the family (𝜈𝜀,M)M for fixed
𝜀>0 and M→∞, in the topology of local convergence (i.e. convergence by testing with continous
functions on ℝΛ𝜀 which depends only of finitely many points of Λ𝜀). In particular we understood
that the local (or weighted) Lp(Λ𝜀) norms of 𝜑: ℝΛ𝜀 → ℝ under the measure 𝜈𝜀,M have finite
moments:

sup
M

� ‖𝜌𝜑‖Lp
p 𝜈𝜀,M(d𝜑)<∞

for any p>1. Actually by working a bit harder one can prove uniform integrability of functions
like exp(‖𝜌𝜑‖L2).

What about uniqueness of the accumulation points? In the extended notes I will also discuss a bit
this issue and using essentially a similar approach one can prove that provided

V ′′(𝜑)⩾−𝜒,

for some 𝜒 > 0 then for m large enough (depending on 𝜒) we have also uniqueness of the limit
measure 𝜈𝜀. This is natural because we do not expect in general that the limit is unique (there
could be phase transitions in the model, in d ⩾2 since it is a model of ferromagnetic unbounded
spin).
The idea to prove uniquess is to compare two solutions Z 1,Z 2 driven by two Gaussian processes
Y 1,Y 2 and use a coupling approach.
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Today the plan is to address the other problem: that is we keep M fixed (let's say M = 1) and
send 𝜀 → 0. This is the ultraviolet limit (UV limit). Obtain uniform estimates in this limit is
more difficult are requires new ideas. There are various possible approaches: regularity structures
(Hairer), renormalization group ideas (Kupiainen), or paracontrolled distributions (GIP, Catel-
lier & Chouk). I will follow this last strategy. The main reference for us here is the papere I
mentioned by Hofmanova & G. [Massimiliano Gubinelli and Martina Hofmanova, `A PDE Con-
struction of the Euclidean Φ3

4 Quantum Field Theory', ArXiv:1810.01700 [Math-Ph], 3 October
2018, http://arxiv.org/abs/1810.01700.]

The main problem is that as 𝜀→0 the process Y becomes a distribution. Recall our context. We
had a dynamics on X which can be decomposed on a linear part

dYt =(Δ𝜀 −m2)Ytdt +21/2dBt

and the non-linear part Z :
∂
∂tZt =(Δ𝜀 −m2)Zt −

1
2V ′(Yt +Zt) (2)

with V ′(𝜑)=𝜆𝜑3 +𝛽𝜑. The computation of V ′(Yt +Zt) is pointwise in space:

V ′(Yt +Zt)(x)=V ′(Yt(x)+Zt(x))=𝜆(Yt(x)+Zt(x))3+𝛽(Yt(x)+Zt(x))

=𝜆Yt(x)3 +3𝜆Yt(x)2Zt(x)+3𝜆Yt(x)Zt(x)2 +𝜆Zt(x)3+𝛽Yt(x)+𝛽Zt(x).

The main problem is the following: (M =1) as 𝜀→0

𝔼[Yt(x)2]=(m2 −Δ𝜀)(x,x)= �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

1
(m2+∑i (2𝜀−1sin(𝜋𝜀ki))2)

≈ �
k∈ℤ∩[−𝜀−1,𝜀−1)d

1
(m2 +2𝜋|k|2)

∝{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{

𝜀2−d d >2

log(𝜀−1) d =2

Which tells us that the typical size of Yt(x) is 𝜀2−d →∞. The estimates from last week are useless
in this limit, because they depend on Lp(Λ𝜀) norms of Yt.

This is a problem of small scales. It hints to the fact that Y 𝜀 is not converging to a function on
𝕋d ≈[0,1]d, not even locally.
One way to deal with this problem and analyse what is going on in the equation (2) is to split all
our functions in “blocks” which are nice.
Let us define 𝕋𝜀

d =Λ𝜀,1=(𝜀ℤ∩[−1/2, 1/2))d.
This here is accomplished via Littlewood–Paley decomposition, i.e. a nice partition of unity in
Fourier space. We split every function f :𝕋𝜀

d →ℝ in very nice pieces (Δif )i⩾−1 as follows

f (x)= �
i⩾−1

(Δif )(x)

where

Δif (x)≔ �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−ik) f̂ (k)e2𝜋ik⋅x i⩾0
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and

Δ−1f (x)≔ �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

𝜒(k) f̂ (k)e2𝜋ik⋅x,

where 𝜌:ℝd →ℝ⩾0 and is such that

𝜒(k)+�
i⩾0

𝜌(2−ik)=1

for a nice function 𝜒: ℝd → ℝ⩾0 with support in a ball ℬ of radius ≈1 around k = 0 ∈ ℝd and
𝜌 is supported on an annulus 𝒜 of radius ≈1. All these functions are smooth (and some other
properties we don't care about right now).
Therefore the Fourier transform of the LP block Δif is supported on an annulus of size 2i and that
of Δ−1f in a ball of radius 1.

Remark. For 𝜀>0 we have Δif =0 if 2i ≳𝜀−1, so we sum over i up to ≈log2𝜀−1. Let us define N𝜀
to be this bound. So

f = �
i=−1

N𝜀

(Δif ),

there is a technical subtelty here on how one handles the last last block but we will ignore it.

Now:

𝔼[(ΔiYt(x))2]= �
k∈(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−ik)2

(m2+∑i (2𝜀−1sin(𝜋𝜀ki))2)

≈ �
k∈2i𝒜⊆(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−ik)2

(m2 +|k|2)
≈ �

k∈2i𝒜⊆(ℤ∩[−𝜀−1,𝜀−1))d

𝜌(2−ik)2

|k|2�
≈(2 i)2

≲(2i)d−2

Which says that ΔiYt ≈(2i)(d−2)/2 which is uniform in 𝜀! (but of course not in i, and i can be large)
One can prove actually that ΔiY 𝜀 converges to a nice C∞ random function on 𝕋d as 𝜀→0.
This decomposition shift the problem of dealing with distribution to a problem of dealing with
large sums.

Definition 1. Let 𝛼∈ℝ and p,q∈[1,+∞]. We say that f ∈Bp,q
𝛼 (a Besov space) iff

‖ f ‖Bp,q
𝛼 ≔‖i⩾−1↦2i𝛼‖Δif ‖Lp‖ℓ q =[[[[[[[[[[[[�

i
(2i𝛼‖Δif ‖Lp)q]]]]]]]]]]]]

1/q
<∞.

These are Banach spaces.

In particular we will use 𝒞𝛼=B∞,∞
𝛼 with norm ‖ f ‖𝒞𝛼 such that

‖Δif ‖L∞ ⩽2−𝛼i‖ f ‖𝒞𝛼.

When 𝛼>0 there are spaces of regular functions, when 𝛼<0 these are just distributions (of course
when 𝜀=0).
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Moreover note that

‖ f ‖B2,2
𝛼2 = �

i⩾−1
22i𝛼‖Δif ‖L2(𝕋𝜀

d)
2 =𝜀d �

x∈𝕋𝜀
d

�
i⩾−1

22i𝛼|Δif (x)|2≈𝜀d �
x∈𝕋𝜀

d

|(1−Δ𝜀)𝛼/2 f |2 ≔‖ f ‖H𝛼2 .

From the estimate above on Y one can prove that almost surely for any t ∈ ℝ, Yt
𝜀 ∈ 𝒞(d−2)/2−𝜅

for any small 𝜅 > 0 uniformly in 𝜀. One can also prove that as a function of t is continuous and
actually uniformly in 𝜀

Y 𝜀 ∈C(ℝ;𝒞(d−2)/2−𝜅)

almost surely.
In the following 𝜅 will always denote an arbitrary small positive quantity. (this is a small loss of
regularity due to the fact that we want almost sure statements).
Note that when d =2 we have Y 𝜀 ∈C(ℝ;𝒞−𝜅) and when d =3 Y 𝜀 ∈C(ℝ;𝒞−1/2−𝜅).

Products in Besov spaces.
Take f ∈𝒞𝛼, g∈𝒞𝛽 then

fg=�
i

Δif �
j

Δjg=�
i, j

Δif Δjg

to give a sense to this product one has to control the two (large) sums. The good way to do it is
to split it in three pieces:

fg=�
i, j

Δif Δjg= �
i< j−K

Δif Δjg+ �
i> j+K

Δif Δjg+ �
|i− j|≲K

Δif Δjg

≔( f ≺g)+( f ≻g)+( f ∘g)

and call them the paraproducts ( f ≺g), ( f ≻g)=(g≺ f ) and the resonant term ( f ∘g).

Theorem 2. The paraproducts are always well defined and

‖ f ≺g‖𝒞𝛽 ≲‖ f ‖𝒞𝛼‖g‖𝒞𝛽, 𝛼>0,

‖ f ≺g‖𝒞𝛼+𝛽 ≲‖ f ‖𝒞𝛼‖g‖𝒞𝛽, 𝛼<0.

The resonant product is well-defined only if 𝛼+𝛽>0 and in this case

‖ f ∘g‖𝒞𝛼+𝛽 ≲‖ f ‖𝒞𝛼‖g‖𝒞𝛽.

Therefore fg is well defined (and continuous) if 𝛼+𝛽>0 and in this case

‖ fg‖≲ ‖ f ‖𝒞𝛼‖g‖𝒞𝛽.

We are allowed to multiply things only if regularity is ok, and the problem is in the resonant term.

Let's go back with these tools to our equation (2). In the r.h.s. we have

V ′(Y +Z)=𝜆Y 3 +3𝜆Y 2Z +3𝜆YZ 2 +𝜆Z 3+𝛽Y +𝛽Z .
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Renormalization:
By the product theorem we see that Y 3 is problematic since the regularity 𝛼=(2−d)/2−𝜅 of Y
is negative. However Y is explicit, and we can do a probabilistic computation to prove that Y 3

converge as 𝜀→0 to a well defined distribution provided it is renormalized.

Theorem 3. There exists a constant c𝜀 such that the random field (renormalized square)

𝕐t
𝜀,2(x)≔(Yt

𝜀(x))2− c𝜀,

converges (in law) as 𝜀→0 to a random field 𝕐2 in C(ℝ;𝒞2𝛼) with 𝛼=(2−d)/2−𝜅<0 (if d ⩾2).
Similarly if d =2 the renormalized cube

𝕐t
𝜀,3(x)≔(Yt

𝜀(x))3 −3c𝜀Yt
𝜀(x),

converges as 𝜀→0 to a random field in C(ℝ;𝒞3𝛼) while if d =3 then convergence holds C−𝜅(ℝ;
𝒞3𝛼) (where C−𝜅 is a space of distributions in the time variable with negative regularity).
Moverover one can take

c𝜀 ≔𝔼[(Yt
𝜀(x))2]≈𝜀(2−d).

With this choiche the renormalization corresponds to “Wick ordering”.

Now we see that replacing

𝛽=𝛽𝜀 =𝛽′−3𝜆c𝜀,

on has (with 𝕐1=Y)

V ′(Y +Z)=𝜆(Y 3−3c𝜀Y)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝕐3

+3𝜆(Y 2 −c𝜀)�
𝕐2

Z +3𝜆YZ 2 +𝜆Z 3+𝛽′Y +𝛽′Z

=𝜆𝕐3 +3𝜆𝕐2Z +3𝜆𝕐1 Z 2 +𝜆Z 3+𝛽′𝕐1 +𝛽′Z .

Magic: one constant works for both problematic terms... (there are reasons for that, namely sub-
criticality of this model).
Next problems: the products

𝕐2�
𝒞2𝛼

Z , 𝕐1�
𝒞𝛼

Z 2.

Let's try to get some estimates for Z : we test the equation (2) with Z and integrate in space 𝕋𝜀
d

1
2

∂
∂t�𝕋𝜀

d
Zt

2+�
𝕋𝜀

d
�|∇𝜀Zt|2 +m2|Zt|2+ 𝜆

2 |Zt|4�

=−1
2�

𝕋𝜀
d
[𝜆𝕐3Z +3𝜆𝕐2Z 2+3𝜆𝕐1Z 3+𝛽′𝕐1Z +𝛽′Z 2].

The l.h.s tells me that I have control of the L2, L4 norm of Z but also of the H1 norm of Z , this
means we have some regularity for Z .
Note that H1 = B2,2

1 . In the Besov scale we have Sobolev spaces. The theory of products and
paraproducts extends naturally to Besov space with indexes p,q other than ∞,∞.
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When d =2 we have that 𝕐k ∈𝒞−k𝛼 with k =1,2,3 and 𝛼=−𝜅 a small negative quantity. There-
fore all the products in the apriori r.h.s. are well defined assuming Z ∈H1 (the sums of regularities
is positive!). For example one has estimates like (for some small 𝛿 and some large K)

��
𝕋𝜀

d
𝕐3Z � ≲ ‖𝕐3‖𝒞3𝛼‖Z‖B1,1

4𝜅 ≲C𝛿‖𝕐3‖𝒞3𝛼
K +𝛿‖∇Z‖L2

2 +𝛿‖Z‖L2
2 ,

��
𝕋𝜀

d
𝕐2Z 2� ≲ ‖𝕐2‖𝒞2𝛼‖Z 2‖B1,1

3𝜅 ≲C𝛿‖𝕐2‖𝒞2𝛼
K +𝛿‖∇Z‖L2

2 +𝛿‖Z‖L4
4 ,

��
𝕋𝜀

d
𝕐1Z 3� ≲ ‖𝕐1‖𝒞𝛼‖Z 3‖B1,1

2𝜅 ≲C𝛿‖𝕐1‖𝒞𝛼
K +𝛿‖∇Z‖L2

2 +𝛿‖Z‖L4
4 ,

So overall we can obtain

1
2

∂
∂t�𝕋𝜀

d
Zt

2+(1−𝛿)�
𝕋𝜀

d
�|∇𝜀Zt|2 +m2|Zt|2+ 𝜆

2 |Zt|4�⩽Q(𝕐)

where

Q(𝕐)≔C �
k=1,2,3

‖𝕐t
k‖𝒞k𝛼

K .

And it is a good apriori estimate in d =2 which are uniform in 𝜀.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
These lecture notes are produced using the computer program TEXMACS. If you want to know more go here www.texmacs.org.
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