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1 Stochastic Di�erential Equations

We introduce various notions of solutions to a stochastic di�erential equation (SDE) driven
by a Brownian motion: weak solutions, strong solutions and martingale solutions. Uniqueness
in law and pathwise uniqueness are two relevant concepts associated to these solutions. The
Yamada�Watanabe theorem link these notions one to the other. Regularity of coe�cients allow
to prove existence of strong solutions.

1.1 Weak and strong solutions

Itô introduced SDE in the '40 with the aim of constructing di�usions, that is strong Markov
processes with continuous paths and with generators which are second order di�erential opera-
tors. Stochastic analysis allows a pathwise approach to the construction of laws on path spaces
and SDEs are the main tool for such constructions. SDE are also a natural approach to model
physical systems which evolve in time and which are perturbed by �noise� (that is e�ect which we
are not able to describe deterministically and for which we choose a probabilistic description).
Recently, stochastic analysis has turned out to be a suitable tool to discuss mathematical
�nance (but Bachelier as early as the beginning of XX century introduced Brownian motion as
a model of market prices). Stochastic analysis allows to easily remove the Markov hypothesis
from the description of random processes (for example allowing memory in the coe�cients) and
more importantly allow to discuss the in�nite dimensional situations more easily or in general
certain Markov processes in very large state spaces (e.g. mean �eld models) in a relatively
intuitive and direct fashion.

Main bibliographic references: [2, 3, 4].

We denote by F� = (Ft)t>0 a �ltration. Let C(R>0; RN) be the space of continuous func-
tions R>0!RN. On C(R>0;RN) we consider the canonical right-continuous �ltration (Ht=
\">0�(Ys; s6 t+ "))t>0 where Y is the canonical process on C(R>0;RN) de�ned by Yt(!)=!t.
Moreover we letH1=_t>0Ht and note thatH1 coincides with the Borel �-�eld B(C(R>0;RN)).
The predictable �-�eld P� is the ���eld generated by left-continuous (Ht)t�adapted processes
on C(R>0;RN).

Fix D;M > 1 and let �:R>0�C(R>0;RD)!RD�M and b:R>0�C(R>0;RD)!RD be two
predictable processes. We will denote �=(�i;j)i=1;:::;D;j=1;:::;M and b=(bi)i=1;:::;D the respective
components. We want to study the multidimensional stochastic di�erential equation (SDE)

dXt
i= bt

i(X)dt+
X
j=1

M

�t
i;j(X)dBt

j ; X0= x2RD i=1; :::;M ; t> 0 (1)
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De�nition 1. A (weak) solution to the SDE ( 1) is given by pair of stochastic processes
(X;B) on a �ltered probability space (
;F ;F�;P) such that

i. B is a M�dimensional (F�;P)�Brownian motion;

ii. for any t> 0,

X
i

Z
0

t

jbsi(X)j ds+
X
i;j

Z
0

t

(�s
i;j(X))2 ds<+1; P–a:s:;

iii. for any t> 0, i=1; :::; d,

Xt
i= x+

Z
0

t

bs
i(X)dt+

X
j=1

M Z
0

t

�s
i;j(X)dBs

j ; P�a.s. : (2)

In what follows we will always use vector notations and rewrite (2) as

Xt= x+

Z
0

t

bs(X)dt+

Z
0

t

�s(X)dBs

where �s(X) is understood as a linear map RM!RD acting on dBs. Unless otherwise stated
on RN we will consider the Euclidean norm (which is equivalent to the Hilbert�Schmidt norm
for linear maps RM!RD seen as elements of RM�D)

Moreover, note that the initial condition is part of the de�nition of solution. In general the
initial condition can be random.

De�nition 2. A (weak) solution (X;B) is a strong solution if X adapted to the �ltration
F�B;P, i.e. the �ltration generated by B and completed according to P.

De�nition 3. We have uniqueness in law for the SDE ( 1) if for any pair of weak solutions
(X;B) and (X~ ; B~) we have Law(X)=Law(X~) on C(R>0;RD).

De�nition 4. The SDE ( 1) has pathwise uniqueness if any pair of weak solutions (X;B)
and (X~,B) (de�ned on the same probability space) are indistinguishable. (If the initial condition
is random we require also that X0=X~0 a.s.)

The following statements clarify the relations between these de�nitions.

Theorem 5. If (X;B) is a strong solution of ( 1) then

i. there exists a measurable map �: C(R>0;RD)! C(R>0;RD) (endowed with the Borel
�-�eld) such that X =�(B) P�a.s. ;

ii. for any (F~�; P~ )�Brownian motion B~ on (
~ ; F~ ; F~�; P~ ) the pair (�(B~); B~) is a strong
solution to ( 1).
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Theorem 6. (Yamada�Watanabe) If pathwise uniqueness holds, then

i. uniqueness in law holds.

ii. here exists a measurable map �: C(R>0; RD)! C(R>0; RD) (endowed with the Borel
�-�eld) such that any weak solution (X;B) satis�es X =�(B) P¡ a:s: (therefore any
weak solution is a strong solution and all the strong solutions coincide up to indistin-
guishability) .

For a proof see [5] or [3, Chap. IX,Thm. 1.7].

Uniqueness in law could be formulated with respect to the joint law of the pair (X; B). A
result of Cherny shows that the two concepts are equivalent and that together with existence
of strong solutions they imply pathwise uniqueness.

Proposition 7. If uniqueness in law holds then

i. for any pair of solutions (X;B) and (X~ ; B~) we have Law(X;B)=Law(X~ ; B~).

ii. existence of a strong solution implies pathwise uniqueness.

For a proof see [1].

So, overall, the situation is the following:

a) It may happen that there are no solution in any probability space;

b) It may happen that there are (maybe multiple) solutions on a probability space but none
on another;

c) if there exists a strong solution on a probability space then it is possible to construct
solutions on any other probability space (carrying a Brownian motion). However there
may be multiple solutions.

d) If pathwise uniqueness holds and there exists a solution on some probability space,
then on any other probability space (carrying a Brownian motion) there exists only one
solution and it is strong (Yamada�Watanabe).

e) The same ideal situation of point d) is reached if uniqueness in law holds and there exists
a strong solution.

2 Martingale problems

Let a:R>0�C(R>0;RD)!RD�D and b:R>0�C(R>0;RD)!RD be predictable functionals
such that the matrix at(x) is positive de�nite for all t> 0 and x2C(R>0;RD).

De�nition 8. The process X is the solution to the martingale problem MP(x0; b; a) if

i. for any t> 0,

X0=x0;
X
i=1

D Z
0

t

jbsi(X)j ds+
X
i

Z
0

t

as
i;i(X) ds<+1; P–a:s:; (3)
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ii. the processes

Mt
i=Xt

i¡X0
i¡

Z
0

t

bs
i(X)ds; t> 0; i=1; :::;D

Nt
i;j=Mt

iMt
j¡

Z
0

t

as
i;j(X)ds; t> 0; i; j=1; :::; D

are (F�X ;P) continous local martingales.

Proposition 9. Let a=��T and X0= x02RD.

i. If (X;B) is a solution to the SDE ( 1) then X is the solution to the martingale problem
MP(x0; b; a);

ii. If X is a solution to the martingale problem MP(x0; b; a) then there exists a �ltered
probability space (
~ ;F~ ;F~�;P~ ) carrying a solution (X~ ; B~) of ( 1) such that Law(X~) =
Law(X).

For a proof see [2].

Martingale problems allow to consider only the process X instead of the pair (X;B) needed in
the de�nition of solutions to the SDE. Nonetheless, as the previous proposition shows, a suitable
Brownian motion can always be added to a solution (at the price of changing the probability
space), in order to satisfy the SDE. Martingale problems thus come handy in some questions
related to transformations of weak solutions where the exact expression of the Brownian motion
is not very important.

Lemma 10. An equivalent formulation to the martingale problem MP(x0; b; a) is to require
that X satis�es ( 3) and that for all f 2C2(RD) the process M [f ] given by

Mt
[f ]= f(Xt)¡ f(X0)¡

Z
0

t

Lf(Xs)ds

is a (F�X ; P) continous local martingale. Here L is the generator of the martingale problem
given by

Lf(t; X)= bt(X):rf(Xt)+
1
2
Trace [at(X)r2f(Xt)] f 2C2(RD):

3 Su�cient conditions for existence and uniqueness

The more general result on uniqueness is the one for Lipschitz path�dependent coe�cients:

Theorem 11. (Itô) Assume that there exists a constant C such that for all t > 0 and x;

y 2C(R>0;RD)we have

jbt(x)¡ bt(y)j+ j�t(x)¡�t(y)j6Ckx¡ yk1;[0;t];

jbt(x)j+ j�t(x)j6C(1+ kxk1;[0;t]):
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Then strong existence and pathwise uniqueness holds.

For a proof see [3].

In what follows we will restrict our considerations to coe�cients which depends only on the
present, namely

bt(x)= b(t; xt) and �t(x)= �(t; xt); t> 0; x2C(R>0;RD):

where b:R>0�RD!RD and �:R>0�RD!RD�M are measurable functions.

In one dimension we can relax the Lipschitz assumption on the di�usion coe�cient up to a
condition of Hölder regularity of 1/2:

Theorem 12. (Yamada�Watanabe) Assume D=1, bt(x)= b(t; xt) and �t(x)=�(t; xt) and
that there exists C; 
 > 0 and an increasing function h:R>0!R>0 such thatZ

0


 ds
h2(s)

=+1

and

jb(t; x)¡ b(t; y)j6C jx¡ y j; j�(t; x)¡�(t; y)j6h(jx¡ y j); t> 0; x; y 2R;

then pathwise uniqueness holds for ( 1).

For a proof see [4, Ch. V, Th. 40.1]. Weak existence can be established for continuous coe�-
cients :

Theorem 13. (Skorokhod) Assume that b; � are continuous and bounded. Then there exists
a weak solutions of ( 1).

For a proof see [4, Ch. V, Th. 23.5].

Other results on existence/uniqueness are available, see [2].

Theorem 14. (Stroock�Varadhan) Let D=M and assume that b is measurable and bounded
and that � is continuous, bounded and such that for all t>0 and x2RD there exists a constant
"(t; x)> 0 such that

j�(t; x)v j> "(t; x)jv j; v 2RD:

Then there exists a weak solution and uniqueness in law holds.
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