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1 Girsanov transformation

Girsanov (Maruyama, Cameron and Martin, Ramer) transformation describes the relation
between modifying semimartingales via a finite variation process and absolutely continuous
changes of probability measures. In particular it describes the quasi-invariance of Wiener
measure wrt. adapted translations with values in the Cameron—-Martin space. We first analyse
general change of measures in presence of a filtration and a general form of Girsanov theorem.
Then we prove some applications to SDEs and to the computation of conditional laws on path
space. The main reference is [5, IV.38 and IV.39).

1.1 Change of measure on a filtered probability space

Let P, Q two probabilities on a filtered measure space (2, F, F,). We will assume that F, is
right continuous. If Q <P on Fo = V>oF;: let

._dQ
4 = 1P

Foo

and note that for all £ >0, Q<P on F; with

]EIP[ZOOI-Ft] = @

@D Zy (1)

Fi

so the process (Z;):>o is a uniformly integrable martingale closed by Z.. In what follows we
will make the main assumption

(Z¢)1>0 is a P—a.s. continuous martingale. (2)

Lemma 1.
1. If T'is a stopping time then

Q| _ ,
dTP]:T_ZT7 (3)

it. If Q~P (i.e. QP and P Q) then P(Z; >0 for allt >0)=1.
iii. If Q~TP then for anyt>s and X € F; and X >0 we have (Bayes formula)

Ep[X Zi| Fs]

Eq[X |5 =~

Q and P a.s. (4)
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w. If Q~P then

M is a Q-martingale < MZ is a P-martingale
M is a local Q-martingale <= MZ is a local P-martingale

Proof. (i) If A€ Fr, by optional sampling :
Ep(l4] = Eq[Zela] = EQ[Eq|Zo| Fr|la] = Eq[Z11L4],

since Zp is Fr measurable we proved the claim. (ii) Let T'=inf {¢ > 0: Z; = 0}, by continuity
Z7r=0 on the event A={T < oo} € Fr. Then

Q(A) = Eg[Ly] = Ep|ZoolLy] = Ep[Z714] = 0.

Since P <« Q we have P(A)=0. (iii) For any ¢ >s>0 and A € F, we have

Ep[X L] = Eq[ZooX 14| = Eq[Z.X 14] = Eq[Eq[Z.X | F,] Ii] = EH{

EqlZX|F
Zs

and the claim follows. Let us prove (iv). The first equivalence is clear from Bayes formula (4).
Let us consider the case of local martingales. Let T be a stopping time such that (M Z)7 is a
@Q martingale. Then for all t>s>0 and A € F, we have

Ep[M{ 14 = Ep|M{ Talr<,] + Ep[M{ Tslrs .

Now Ep[M{Tslr<,] = Ep[MITslr<,] since here T < s < t. On the other hand Tlz, is
Fras C Frar measurable, so by (3) we have

Ep[M{ Talrs s = Eq[Zrat Mradlalrs s = Eg[(Z M)T Talzs
since Iy~ is Fs—measurable and (M Z )T a Q-martingale. But now
Eq[(ZM) Al = EQZsMLalys i) = Ep[MIalrs o) = Ep[MI Tslrs
since M I 4ll7~ is also Fs—measurable. Then
Ep[M{ 4] = Ep|MITallz< ] + Ep[MITallrs | = Ep[MIT4]

which proves that M7 is a PP-martingale. The reverse implication can be proven similarly.
Taking a localizing sequence of stopping times (73,),, allows to conclude. 0

Lemma 2. (Stochastic exponential, Doleans) Let (Z;)i>0 be a continuous local P—mar-
tingale such that Z; >0 for allt >0 P-almost surely then there exists a unique continuous local
P-martingale (Lt)i>o such that

Zt:exp<Lt—T> —&(L); (6)



and given by the formula

taz,
Lt:10g20+/ 7 (7)
0 s

Proof. (Uniqueness) Assume L is another such martingale. Then the local martingale D =
L — L satisfies Dy=0 and 2D, = [L], — [L];. Which implies that D, =0 for all ¢ >0 since D is
a local martingale of bounded variation starting at 0. (Existence) Let L be defined by (7),
applying Ito formula to ¢+~ log (Z;) (possible since Z; >0 for all ¢ >0 and 2z~ log(z) is C? away
from z=0) we get the claim, since

_dz 1[Z 1
given that dZ;/ Z,=dL; and d[L];=d[Z];/ Z} from eq. (7). O

Remark 3. Uniqueness of L can be also checked via Ito6 formula. Let D;=exp(—L;+ [L]:/2)
where L is defined by (7). Applying It6 formula to D Z one has

ZtDt

d(DZ)t:thDt‘l—DtdZt+d[D,Z]t:ZtDt(—st+d[ ] /2) [L]t+DtdZt—Dtd[L,Z]t,

using dL=dZ/Z and dD = —DdL we get d(D Z);=0 so Z;=(ZyDo)D; * = exp(—L;+[L];/2)
since DyZy=1.

Theorem 4. (Girsanov) Let P ~Q and let Z be martingale defined in eq. (1), (continuous
according our assumptions). Let L be the local martingale such that Z = E(L). If M is a

local PP-martingale then M = M — [L, M] is a local Q-martingale. In particular if B is a
(Fe, P)-Brownian motion then B= B — [B, L] is a (Fe, Q)-Brownian motion.

Proof. By Ito formula
A(MZ)=ZdM + MAdZ +d[M , Z)= ZdM — Zd[L, M|+ MAdZ + Zd[M , L) = ZdM + MdZ  (8)

since [M, Z]=[M, Z] due to the fact that M — M is of bounded variation and d[M, Z] = Zd[M,
L] since dZ = ZdL by the definition (6) of £(L). Then MZ is a local P-martingale given that
the r.h.s. of (8) is the sum of two stochastic integrals wrt. the local P-martingales M and Z.
By (5) we conclude that M is a local Q-martingale. We remark that [B, B], = [B, B], =t for
all t >0 so by Levy’s theorem B is a (Fe, Q)-Brownian motion. 0

Remark 5. By Girsanov theorem two equivalent probability measures P and @QQ agree in
classifing the same process X as a semimartingale. Indeed if X is a [P-semimartingale with
decomposition X = Xy + M + V then X is also a (Q-semimartingale with decomposition
X = Xo+ M +V where V =V + [L, M]. On the other hand, note that, again by Girsanov,
L=—L+[L] is a local martingale under @ and

dPP

01QI =Z; '=exp(~L+[L]/2) =exp(L — [L]/2)=E(L)



=

is a Q-martingale. Then if N is a local Q-martingale, the process N: =N — [
L]=N + [N, L] is a P-martingale. In particular :

M is a local P-martingale iff M — [M, L] is a local Q-martingale.

Remark 6. (Finite horizon) We can replace an infinite time horizon with a finite one, ¢, < +o00
and require that IP and Q are equivalent on F;, and (Z;)icp,+,) is a continuous P-martingale
for which there exists a local P-martingale (Ly)¢co,¢,] such that Z=E&(L), etc...

Example 7. (Brownian motion with constant drift) Let X be a d-dimensional P-Brow-
nian motion and v € R? a fixed vector. Consider the martingale

Z]::exp('y.Xt—%hPt):5(7.X)t, t>0

and for any ¢ >0 the measure P} defined on (Q, F;, (Fs)<s<t) by AP} = Z]dIP|£,. By Girsanov’s
theorem we have that, the process

Xo=Xs—[L, X]|s=Xs— [7.X, X]s=Xs — s, s€0,t]

is a d-dimensional P;-Brownian motion, so under P} the process X is a Brownian motion
with drift 7. Note that the family of measures ((€2, F:, IP})):>0 is consistent: P} |z =P for all
0< s<t. By Kolmogorov extension theorem there exists a unique measure P7 on (€, F.,) such
that P7|z=P/ for all t>0. Now, the F,, measurable event

lim Ko=) _
S——400 S ’

has IP probability 1 (e.g. for the law of iterated logarithm applied to the P-BM X) while it
has P7 probability 0 since s+ X; — s is a P?-Brownian motion.

1.2 Doob’s h—transform

Fix a finite time horizon I = [0, t,] and consider a measure IP on (Q, F, (F;)ier) with F = F;..
Let (Xi)ier an R valued It6 process with drift b, diffusion coefficient o and generator £ =

b.V + %O'O'TI V2 We denote by B the m—dimensional Brownian motion driving X (d, m are

arbitrary integers). A very simple and natural source of equivalent change of measures for P
is obtained from functions h € CH2(I x R% R+g) such that the process (Z;:= h(t, X;))icr is a
martingale. In this case we can define QQ by dQ = ZdP. By 1t6 formula, the function Z satisfies

but by the assumed martingale property the bounded variation part in the semimartingale
decomposition of Z must vanish, so

(O + L)h(t, X;) =0



for almost every t € I, IP-a.s. In order to have a properly normalized probability measure we need

that Zy="h(0, Xo)=1. Now, dL,=dZ;/ Z;= (o Vh(t, X;)) / h(t, X;)dB= 0 Vlog h(t, X;)d B; so

t t
Zt:exp( / asTmogh(s,Xs)st—% / |03TV10gh(s,Xs)|2ds>
0 0

and in particular, by Girsanov theorem, under @ the (IR"—valued) process B is a semimartingale
given by

B,=B,+ B, L], = B, + o/ Vlog h(t, X,)dt

where B is an R™ valued IP-Brownian motion (on the interval I). As a consequence the Ito
process X has decomposition

dX;=b;dt + 0y dB = (by+ 0y 0/ Vlog h(t, X;)) dt + 0y dB = by dt + 0, dB.

This shows that under IP the process X remains an It6 process with the same diffusion coefficient
but a different drift b given by

Bt:bt‘l—UtU?VlOgh(t,Xt), tGI

This construction is called Doob’s h-transform and was originally introduced in the context of
Markov processes. In the case of 1t6 diffusions (i.e. where the drift and diffusion coefficients by,
o, are deterministic functions of X;) the h—transform gives a transformation of the associated
martingale problems. Indeed from the previous discussion we see that if (X, IP) is a solution
of the martingale problem MP(zg,b,007) then (X, Q) is a solution of the martingale problem

MP (o, b, oo ™).

Exercise 1. Prove that, more generally, the h-transform gives a transformation of martingale
problems from MP(zq, b, a) to MP(z, b, a). (That is, reproduce the above argument without
relying on the Ito decomposition of X)

The Brownian motion with drift introduced in Example 7 is a particular case of this transform
where the function h is given by

h(t,x)=exp(y.x — |v|t/2), t>0,z€ R

Very interesting cases of h—transforms arise if we allow the interval I =[0,t,) (or [0, +00)) to
be open at the right endpoint, i.e. if we do not require the measure QQ to be equivalent to P
on F;, but given by dQ|z=2: dQ)|#, for all £ € I. In this case we ask that (Z;):es be striclty
positive continuous martingale in / but we do not pose any restriction on Z;,.

1.3 Diffusion bridges

Using Doob’s h-transform we can describe very effectively the behavior of a Markovian Ito
diffusion X with values in R? conditioned to reach some state z; € R? at a given time (which we
take to be 1). The interesting fact is that this kind of conditioning is singular since usually the
event is of probability 0 wrt. the law of the unconditioned diffusion. Let I =10,1) and assume
that the It6 diffusion X is a Markov process with transition density

P(X;edy|Xs=2)=p(s,z:t,y)dy.



In this case we can define the function

gﬂfl(s’x):—w sclI, zcRY

B p(oa X0, ]-7 $1)7

and assume that g is CY2(1 x R% Rsg). Let Z7' = ¢*\(t, X;) for t € I and observe that, by
construction, Z;* is a martingale since

v . p(t,y; 1, 21)p(s, Xs; t, y) p(s, X1, 21) o
E[Z5|F=E[Z"|X,] = dy = =75, 0<s<t<1,
[ ! | ] [ ! | ] / p(owxo;lu'xl) Y p(07x0317371)

by the Markov property and the Chapman—Kolmogorov equation. Define the measure P*!
on Fi as the extension of the family (IPy').c; where dP;* = Z; dIP|x, and observe that for all
0<ty<--<t,<1 and bounded test function f we have

/f(Xt17 sy Xtm xl)p(tm th; 17 xl)dxl = EIP[f(thv BT th? Xl)lﬂn]

by Markov property. Then taking expectation wrt IP we obtain
Ep[f( Xy, oy Xty X1)] = /E]le[f(ti ces Xty 1) | P(0, T3 1, 1) d

which shows that letting @ ;(y) := Eps[ f(Xyy, ..., Xy, 71)] for y € R, we have
Ep[f(Xey, o X, X0)r(X0)] = Ep[® (X1)r(X1)]

for any bounded measurable function r. In particular ® ;(X1) =Ep|f(X4,, ..., X4, X1)| X1 and
®; is a regular conditional probability for IP given o(X;). We conclude that IP™ is obtained by
h—transforming P via the function g, in particular that under the measure P** the Ito diffusion
X has a new drift b** given by :

b (t, Xp) =b(t, Xy) + (o0T)(t, Xy)Viog p(t, X¢; 1, 21), tel.

Usually the additional logarithmic derivative of the transition density become singular as ¢t — 1.
This accounts for the fact that the diffusion must satisfy X;— x; when ¢t — 1 and the martingale
part of the diffusion has to be counterbalances by a the strong drift in order for this to happen
with probability one.

Exercise 2. Compute the drift in the case of X being a Brownian motion in R?.

1.4 Diffusions conditioned to stay in a given domain

We want to give an idea of the method used by Pinsky [3] to study a Markovian diffusion process
X on RY conditioned to stay in a given subdomain D C RY. For more details please refer to
the original paper.



Let D CR? an open bounded and connected set and let 7p =inf {t > 0: X, & D}. Let (X, P,)
be a Markov process satisfying the SDE

dXt:b(Xt)dt+O'(Xt)dBt, XOI.CL'.

where B in a Brownian motion in R™. Let £L=5b.V + %O’O’Ti V2 the generator of X. Fix T >0
and define the measure QZ(-) =P,(-|7p >T) for the process X conditioned to stay in D up to
time 7. We assume that the function

g () =Pu(tp>T) r€eD
is in C*(D) and that

i V' @) _ V()
o gT(w) | pol@)

uniformly on compact subsets of D. Here ¢y is the eigenfunction of £ with Dirichlet boundary
conditions corresponding to the real simple eigenvalue \g. We will assume that ¢y > 0 on D
and that ¢y =0 on dD. Let MT be the process M{ := g" " (X;r,,) / g7 (Xo), by the Markov
property of X we have

_Eu[HLpor]  Eo[Hg"(Xo)lrp>d _ EolH g™ (Xinrp)] _ T
Palll="ge) =7 g g M

for any ¢ <T and any r.v. H bounded and F; measurable. Moreover

E[M! Y F) = E[Px,(tp > T — t)I,~|F = Px
t>5>0.

™ >T — 5) = g7 %(Xprp) = MZ,

s/\‘rD(

Note that under QI we have QI (7p <t) =0 so that under QI the process X takes values in
D. By Doob’s h-transform this implies that, under QI the process X is an Ito diffusion in D
with diffusion matrix o|p and drift

b7 () = b(x) +

Under some technical assumptions on the behaviour of ¢’ as T — oo it is possible to show
that on any bounded interval [0, S] the process (X, QL) converges in law, as T — 0o, to a weak
solution (X, Q) of the SDE with diffusion matrix ¢ and drift

b(a) = Jim B (2) =b(x) + (00 ™)(x) Ypf?:g) )

The corresponding law (X, Q) can be understood as the law of original process conditioned
never to leave D.



Example 8. (Brownian motion conditioned to stay positive) Let X be a Brownian motion on
R starting at z¢ € (0, L) for some L > 0. Let @Q be the measure obtained by conditioning the
Brownian motion to hit L before 0:

_ Pz,
dQ|foo_W7

where A={T =+4ocor Xy =L} and T=inf {t > 0: X; € (0, L)}. Note that P(T = +o00) = 0.
Letting h(x) = (z /o) the process Z;=h(X}) is a martingale starting at 1 and j%#FZt for all
t > 0. By Girsanov theorem under @ the process X satisfies the SDE (on a random interval,
until X; = L for the first time)

dXt:df(tJrﬁ, tel0,7T)
X

starting at zo, where X is a @Q-Brownian motion on [0, T']. In particular this solution to the
SDE never touches 0. Moreover as L — oo we have T'— oo IP-p.s.. This suggests to define @ by
j%|;t:X?°/xo >0 for all £ >0 where Ty=inf{t > 0: X; <0}. Now, X70 is a positive martingale
(why?) so @Q is well defined, but singular wrt. P on F., since (by recurrence of the BM)
P(Th < 00) =1 while Q(Ty < 00) =0 by definition. In this case the process X satisfies the SDE

- dt
= — >

where now X is a Q-Brownian motion on R.

Example 9. (Brownian motion conditioned to stay in D= (0, 7)) Let X be a Brownian motion
under IP. In this case the first Dirichlet eigenfunction of the Laplacian in D is pg(x) = sin(z)
and A =1 the corresponding eigenvalue. Let h(t,z) = e'po(z). Then Z,=h(t, X;)/h(0,x¢) is a
[P-martingale (by It6 formula) and we can define the measure @Q with density Z; wrt IP on F;.
Under @QQ the process X satisfies the SDE

cos(Xy)

dX,=dB,+ sin(Xy)

dt.

Example 10. (Brownian motion in a Weyl chamber). Let X = (X, ..., X") be a n—dimensional
Brownian motion starting at xo€ .S where S C R" is the Weyl chamber, that is the set

S={z=(2',..,2m eR ' <a?<- - <a"}.

Consider the function (z) =[], _, (z7 — ")/ IL; (z) — x}) and let Ty =inf {t > 0: h(X;) =0}.
One can check that h is harmonic in S. Performing the h transform with this function we obtain
a system of interacting Brownian motions on R satisfying, under Q:

; 1 ; .
JF

In particular this shows that under @ the processes (X?); never intersects and preserve their
linear order. This process is called Dyson’s Brownian motion [1| and coincide with the process
describing the evolution of eigenvalues of a natural continuous diffusion in the space of sym-
metric n X n matrices.



1.5 Exponential tilting

As seen in the previous examples and in many applications we are required to study the
measures PZ on (€, F..) obtained from PP via exponential “tilting” with a given local continuous
[P-martingale L (started at 0):

AP r=E(L),dP|,  t=0. 9)

In order for this construction to make sense and IP* be well defined, we need (€(L);)¢>o to be a
(true) martingale and not just a local one (otherwise we cannot even guarantee that PZ(Q)=1).
Moreover the fact that the family of measures dPf =&(L);dP|#, on (£, F;) indentifies a unique
measure P on (2, F..) via PL|z=Pf is due to Kolmogorov—Daniell extension theorem: indeed
F=PLiff £(L) is a martingale.

E]

the family is consistent IPF

In a finite horizon I =0, t,] we need to ensure that E[E(L),,]=1.

Lemma 11. A positive local martingale M such that IE[My] < oo is a supermartingale and it
converges a.s. as t— oo to a limit My >0 such that E[M, ] <E[My]. If E[M.|=E[M,| then
M s a UI martingale.

Proof. Let (7},)n>0 a reducing family for (M; — Mg)¢>o, then for all 0 <s <t
E[M,™ — My|F| = E[M{"|F| — Mo= M — M.
By the conditional form of Fatou’s lemma (and the integrability of M)

E[M,|F,| = E[liminf M

fs} < liminf E[M"|F,)] = M,.

We will assume (without proof) that a positive continuous supermartingale converges a.s. The
next exercise completes the proof. 0]

Exercise 3. Let M be a positive continuous supermartingale such that E[My] < co. Let
My = limy, o M; (assumed to exist P-a.s.). Show that if E[M,] = E[M,| then M is a Ul
martingale. [Hint: prove that E[My|F] < My and that E[M;] =E[Mo] and conclude.]

The next results describes sufficient conditions under which we can ensure the crucial property
E[E(L)s] = 1 when Ly = 0. As just shown in Lemma 11 this implies that (E(L):)¢>0 is a

UI martingale. Condition (11) below is called Novikov’s condition. Condition (10) is due to
Krylov [2| from which the proof below is taken.

Theorem 12. (Novikov, Krylov) Let L be a local martingale starting at 0 and assume that

lsig)lslog]E[exp((l —¢)[L]x/2)]=0 (10)

then E[E(L)w] =1. In particular this holds if

Elexp([L]so/2)] < 0. (11)



Proof. We will start by proving the following weaker statement:
dpo > 1: Elexp(po[ L] /2)] < +00 = E[E(L)] = 1.

Let (7},)n>1 be a family of stopping times reducing L and such that 7,, <n for all n>1. Then
for any r > 1 we have

E[(€(L™)oo)"] = Elexp(r LI — r [L™]5 /2)] = Elexp(r L2 — % p[L™] o0 / 2)exp((r?p — r)[ L] o0/
2)]

by Hélder inequality (with p,¢>1and p~'+ ¢ '1=1)

E[(E(L™)o0)] S (BIE(rp L™)oe]) P (Elexp(~(r, p)[L ™o /2)])V,
where

2
- ~1
rep T_pT_Tp

= 1.
1—pt p—1 ”

y(r,p)=q(r’p—r)=

When r— 1+, v(r, p) = p+ so we can choose 1 < p < py and r =1+ ¢ for sufficiently small
e >0 to ensure that v(r, p) < po. With this choice, using the fact that £(rpL*) is a martingale,
that [LT], < [L], <[L]s and the hypothesis of (11), we get

E[(£(L™)o0)"] < (Elexp( 7(r, p)[L]so/2))"* < (Elexp(po[ L] /2)]) /¢ < +o0.
Since r > 1, the fact that sup,E[(£(LT"))"] < +oo implies that the family (£(L™")y), is

uniformly integrable for any ¢ > 0. From this we conclude that E(E(L)) =E[lim, E(LT") ] =
lim, B[ (L)) =1 so (11) is proven.

Let us go back to the proof of the Lemma. Take ¢ € (0,1) and observe that letting po=(1+¢)?>1
we have

Elexp(po[(1 — €) L]/ 2)] = E[exp((1 — £%)[L] 0/ 2)] < 0.
which by (11) implies that E[E((1 —¢)L)s) = 1. By Hélder inequality,
1=E[E((1 —&)L)s] = Elexp((1 = &)(Loo = [L]sc/2))exp((1 - €)e[L]oo / 2)]
S(E[E(L)oe)) " (Elexp((1 — ) [L]e /2)])*.

Letting e — 0 we obtain 1 <E[E(L)s] due to (10). This concludes our argument since we already
know that E[E(L)w] <1 (Fatou). O

Remark 13. The conditions (10) and (11) are not necessary for £(L) to be a martingale.
Another well known sufficient condition is Kazamaki condition

Elexp(Ls/2)] < 400, (12)

which is weaker than Novikov’s. For more details refer to Revuz and Yor [4].

10



1.6 Tilting via a Brownian local martingale

Let (Q, F = Foo, Fu, P) carry a d-dimensional Brownian motion B and let b an adapted R%
valued process for which

t
/ |bs|2dss < +o0, P—as.  Vt>0.
0
Let L® be the scalar continous local martingale

t
ng::/bs.st, t>0,
0

assume that £(LP) is a martingale and define P*:=PL as in eq. (9). The process B satisfies the
equation

dBt:btdt+th, tZO,

where W is a IP*~Brownian motion.

Example 14. (Solutions to SDEs) Exponential tilting via the martingale L° is useful to
construct (weak) solutions to SDEs with a general class of drift coefficients. It will be convenient
to assume that Q= C(Rxg; R?), that P is the d-dimensional Wiener measure and that X is the
canonical process on €2 and that the filtration F, is generated by X. We consider a predictable

Ré-valued process b given by a function b: Rsg x Q— R via by(w) = by(X (w)) and we denote it
b=:b(X). By tilting IP via L*X) we obtain that, under IP* the process X is a solution of the SDE

dXt:bt(X)‘l—th, t>0,

provided £(L*™) is a martingale. A natural condition on b which guaratees the martingale
property is

by(2)| < Co(1+ || 0o,[0,4), t>0,z€0 (13)
where C; < +oo for all £ >0 (see next exercise).

Exercise 4.

a) Prove that if

Ibt(x)|<0t(1+|xt|)’ t>0,$€Q,

then Novikov’s condition holds for all £ >0, i.e.

e [ 000 )

[Hint: show that the condition holds for ¢ small enough and then use the Markov property
to extend to all ¢

< 400, t=0.

11



b) Prove that

P(| X lp.g>7) <Ce /2 t>0,r>0.

Hint: use Doob’s inequality for the submartingale i and optimize over A >0
y g

c¢) Prove the same result as in (a) under the more general assumption (13). [Hint: for small
time use (b) to estimate the size of the maximum of the Brownian motion, extend to all
times via the appropriate Markov process|

More generally, solutions to SDEs with coefficients b, o (in general path dependent) are trans-
formed to solutions:

Corollary 15. (Drift transformation of SDEs) If (X, B,P) is a weak solution to
d X =by(X)dt + o4(X)d B

and Cy=cy(X) is such that E(LC) is a martingale then (X, B,PC) is a weak solution to
dX; = by(X)dt + oy( X)d B,

where the new drift is given by b=>b+ oc and dB,=dB; — c,(X)dt.

Exercise 5. Generalise Girsanov transformation to a martingale problem MP(z, b, a).

Exercise 6. Use Girsanov transform to prove the uniqueness in law of the weak solution of

the SDE

where b: R>o X C(Rso; RY) — R? is a bounded, previsible drift.
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