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1 Girsanov transformation

Girsanov (Maruyama, Cameron and Martin, Ramer) transformation describes the relation
between modifying semimartingales via a �nite variation process and absolutely continuous
changes of probability measures. In particular it describes the quasi�invariance of Wiener
measure wrt. adapted translations with values in the Cameron�Martin space. We �rst analyse
general change of measures in presence of a �ltration and a general form of Girsanov theorem.
Then we prove some applications to SDEs and to the computation of conditional laws on path
space. The main reference is [5, IV.38 and IV.39].

1.1 Change of measure on a �ltered probability space

Let P;Q two probabilities on a �ltered measure space (
; F ; F�). We will assume that F� is
right continuous. If Q�P on F1=_t>0Ft let

Z1: =
dQ
dP

����
F1

and note that for all t > 0, Q�P on Ft with

EP[Z1jFt] =
dQ
dP

����
Ft
=:Zt (1)

so the process (Zt)t>0 is a uniformly integrable martingale closed by Z1. In what follows we
will make the main assumption

(Zt)t>0 is a P�a.s. continuous martingale. (2)

Lemma 1.

i. If T is a stopping time then

dQ
dP

����
FT
=ZT ; (3)

ii. If Q�P (i.e. Q�P and P�Q) then P(Zt> 0 for all t> 0)=1.

iii. If Q�P then for any t> s and X 2̂ Ft and X > 0 we have (Bayes formula)

EQ[X jFs] =
EP[XZtjFs]

Zs
Q and P a.s. (4)
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iv. If Q�P then

M is a Q�martingale () MZ is a P�martingale
M is a local Q�martingale () MZ is a local P�martingale

(5)

Proof. (i) If A2FT , by optional sampling :

EP[IA] =EQ[Z1IA] =EQ[EQ[Z1jFT ]IA] =EQ[ZTIA];

since ZT is FT measurable we proved the claim. (ii) Let T = inf ft> 0: Zt= 0g, by continuity
ZT =0 on the event A= fT <1g2FT . Then

Q(A)=EQ[IA] =EP[Z1IA] =EP[ZTIA] = 0:

Since P�Q we have P(A)= 0. (iii) For any t> s> 0 and A2Fs we have

EP[X IA] =EQ[Z1X IA] =EQ[ZtX IA] =EQ[EQ[ZtX jFs] IA] =EP

�
EQ[ZtX jFs]

Zs
IA

�

and the claim follows. Let us prove (iv). The �rst equivalence is clear from Bayes formula (4).
Let us consider the case of local martingales. Let T be a stopping time such that (MZ)T is a
Q martingale. Then for all t> s> 0 and A2Fs we have

EP[Mt
TIA] =EP[Mt

TIAIT6s] +EP[Mt
TIAIT>s]:

Now EP[Mt
TIAIT6s] = EP[Ms

TIAIT6s] since here T 6 s 6 t. On the other hand IAIT>s is
FT^s�FT^t measurable, so by (3) we have

EP[Mt
TIAIT>s] =EQ[ZT^tMT^tIAIT>s] =EQ[(ZM)s

T IAIT>s]

since IAIT >s is Fs�measurable and (MZ)T a Q�martingale. But now

EQ[(ZM)s
TIAIT>s] =EQ[ZsMsIAIT>s] =EP[MsIAIT>s] =EP[Ms

TIAIT>s]

since Ms IAIT>s is also Fs�measurable. Then

EP[Mt
TIA] =EP[Ms

TIAIT6s] +EP[Ms
TIAIT>s] =EP[Ms

TIA]

which proves that MT is a P�martingale. The reverse implication can be proven similarly.
Taking a localizing sequence of stopping times (Tn)n allows to conclude. �

Lemma 2. (Stochastic exponential, Doleans) Let (Zt)t>0 be a continuous local P�mar-
tingale such that Zt>0 for all t>0 P�almost surely then there exists a unique continuous local
P�martingale (Lt)t>0 such that

Zt= exp
�
Lt¡

[L]t
2

�
=: E(L)t (6)
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and given by the formula

Lt= logZ0+
Z
0

tdZs
Zs

: (7)

Proof. (Uniqueness) Assume L~ is another such martingale. Then the local martingale D =
L¡L~ satis�es D0= 0 and 2Dt= [L]t¡ [L~]t. Which implies that Dt= 0 for all t> 0 since D is
a local martingale of bounded variation starting at 0. (Existence) Let L be de�ned by (7),
applying Itô formula to t 7! log (Zt) (possible since Zt>0 for all t>0 and z 7! log(z) is C2 away
from z=0) we get the claim, since

dlog(Zt)=
dZt
Zt
¡ 1
2
[Z]t
Zt
2 =Lt¡

1
2
[L]t

given that dZt/Zt=dLt and d[L]t=d[Z]t/Zt
2 from eq. (7). �

Remark 3. Uniqueness of L can be also checked via Itô formula. Let Dt= exp(¡Lt+ [L]t/2)
where L is de�ned by (7). Applying Itô formula to DZ one has

d(DZ)t=ZtdDt+DtdZt+d[D;Z]t=ZtDt(¡dLt+d[L]t/2)+
ZtDt

2
d[L]t+DtdZt¡Dtd[L;Z]t;

using dL=dZ /Z and dD=¡DdL we get d(DZ)t=0 so Zt=(Z0D0)Dt
¡1= exp(¡Lt+ [L]t/2)

since D0Z0=1.

Theorem 4. (Girsanov) Let P�Q and let Z be martingale de�ned in eq. ( 1), (continuous
according our assumptions). Let L be the local martingale such that Z = E(L). If M is a
local P-martingale then M~ = M ¡ [L; M ] is a local Q�martingale. In particular if B is a
(F�;P)�Brownian motion then B~ =B ¡ [B;L] is a (F�;Q)�Brownian motion.

Proof. By Itô formula

d(M~Z)=ZdM~ +M~ dZ+d[M~ ;Z]=ZdM ¡Zd[L;M ]+M~ dZ+Zd[M;L]=ZdM +M~ dZ (8)

since [M~ ;Z]= [M;Z] due to the fact thatM~ ¡M is of bounded variation and d[M;Z]=Zd[M;
L] since dZ =ZdL by the de�nition (6) of E(L). Then M~Z is a local P�martingale given that
the r.h.s. of (8) is the sum of two stochastic integrals wrt. the local P�martingales M and Z.
By (5) we conclude that M~ is a local Q-martingale. We remark that [B~ ; B~]t= [B; B]t= t for
all t> 0 so by Levy's theorem B~ is a (F�;Q)�Brownian motion. �

Remark 5. By Girsanov theorem two equivalent probability measures P and Q agree in
classi�ng the same process X as a semimartingale. Indeed if X is a P�semimartingale with
decomposition X = X0 + M + V then X is also a Q�semimartingale with decomposition
X = X0 +M~ + V~ where V~ = V + [L; M ]. On the other hand, note that, again by Girsanov,
L~ =¡L+ [L] is a local martingale under Q and

dP
dQ
jFt=Z~t=Zt

¡1= exp(¡L+ [L]/2)= exp(L~¡ [L~]/2)= E(L~)
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is a Q�martingale. Then if N~ is a local Q�martingale, the process N : =N~ ¡ [N~ ; L~]=N~ + [N~ ;

L] =N~ + [N;L] is a P�martingale. In particular :

M is a local P�martingale i� M ¡ [M;L] is a local Q�martingale.

Remark 6. (Finite horizon) We can replace an in�nite time horizon with a �nite one, t�<+1
and require that P and Q are equivalent on Ft� and (Zt)t2[0;t�] is a continuous P�martingale
for which there exists a local P�martingale (Lt)t2[0;t�] such that Z = E(L), etc...

Example 7. (Brownian motion with constant drift) Let X be a d�dimensional P�Brow-
nian motion and 
 2Rd a �xed vector. Consider the martingale

Zt

 := exp

�

:Xt¡

1
2
j
 j2t

�
= E(
:X)t; t> 0

and for any t>0 the measure Pt

 de�ned on (
;Ft; (Fs)6s6t) by dPt


=Zt

dPjFt. By Girsanov's

theorem we have that, the process

X~s=Xs¡ [L;X]s=Xs¡ [
:X;X]s=Xs¡ 
 s; s2 [0; t]

is a d�dimensional Pt

�Brownian motion, so under Pt


 the process X is a Brownian motion
with drift 
. Note that the family of measures ((
;Ft;Pt


))t>0 is consistent: Pt

 jFs=Ps


 for all
06 s6 t. By Kolmogorov extension theorem there exists a unique measure P
 on (
;F1) such
that P
 jFt=Pt


 for all t> 0. Now, the F1 measurable event

lim
s!+1

(Xs¡ 
s)
s

= 
;

has P probability 1 (e.g. for the law of iterated logarithm applied to the P�BM X) while it
has P
 probability 0 since s 7!Xs¡ 
s is a P
�Brownian motion.

1.2 Doob's h�transform

Fix a �nite time horizon I = [0; t�] and consider a measure P on (
;F ; (Ft)t2I) with F =Ft�.
Let (Xt)t2I an Rd�valued Itô process with drift b, di�usion coe�cient � and generator L =

b:r +
1

2
��T : r2. We denote by B the m�dimensional Brownian motion driving X (d; m are

arbitrary integers). A very simple and natural source of equivalent change of measures for P
is obtained from functions h 2C1;2(I �Rd;R>0) such that the process (Zt := h(t; Xt))t2I is a
martingale. In this case we can de�ne Q by dQ=ZdP. By Itô formula, the function Z satis�es

dZt=�t
Trh(t; Xt):dBt+(@t+L)h(t; Xt)dt

but by the assumed martingale property the bounded variation part in the semimartingale
decomposition of Z must vanish, so

(@t+L)h(t; Xt)= 0
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for almost every t2I,P-a.s. In order to have a properly normalized probability measure we need
that Z0=h(0;X0)=1. Now, dLt=dZt/Zt=(�tTrh(t;Xt))/h(t;Xt)dBt=�t

Trlogh(t;Xt)dBt so

Zt= exp
�Z

0

t

�s
Trlog h(s;Xs)dBs¡

1
2

Z
0

t

j�sTrlog h(s;Xs)j2ds
�

and in particular, by Girsanov theorem, underQ the (Rm�valued) process B is a semimartingale
given by

Bt=B~t+ [B;L]t=B~t+ �t
Trlog h(t;Xt)dt

where B~ is an Rm�valued P�Brownian motion (on the interval I). As a consequence the Itô
process X has decomposition

dXt= bt dt+ �t dB=(bt+ �t�t
Trlog h(t;Xt)) dt+ �tdB~ = b~t dt+�t dB~:

This shows that underP the processX remains an Itô process with the same di�usion coe�cient
but a di�erent drift b~ given by

b~t= bt+�t�t
Trlog h(t;Xt); t2 I:

This construction is called Doob's h-transform and was originally introduced in the context of
Markov processes. In the case of Itô di�usions (i.e. where the drift and di�usion coe�cients bt;
�t are deterministic functions of Xt) the h�transform gives a transformation of the associated
martingale problems. Indeed from the previous discussion we see that if (X; P) is a solution
of the martingale problem MP(x0; b; ��T) then (X;Q) is a solution of the martingale problem
MP(x0; b~; ��T).

Exercise 1. Prove that, more generally, the h-transform gives a transformation of martingale
problems from MP(x0; b; a) to MP(x0; b~; a). (That is, reproduce the above argument without
relying on the Ito decomposition of X)

The Brownian motion with drift introduced in Example 7 is a particular case of this transform
where the function h is given by

h(t; x)= exp(
:x¡ j
 jt/2); t> 0; x2Rd:

Very interesting cases of h�transforms arise if we allow the interval I = [0; t�) (or [0;+1)) to
be open at the right endpoint, i.e. if we do not require the measure Q to be equivalent to P
on Ft� but given by dQjFt=Zt dQjFt for all t 2 I. In this case we ask that (Zt)t2I be striclty
positive continuous martingale in I but we do not pose any restriction on Zt�.

1.3 Di�usion bridges

Using Doob's h�transform we can describe very e�ectively the behavior of a Markovian Itô
di�usion X with values in Rd conditioned to reach some state x12Rd at a given time (which we
take to be 1). The interesting fact is that this kind of conditioning is singular since usually the
event is of probability 0 wrt. the law of the unconditioned di�usion. Let I = [0; 1) and assume
that the Itô di�usion X is a Markov process with transition density

P(Xt2 dy jXs=x)= p(s; x; t; y)dy:
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In this case we can de�ne the function

gx1(s; x) :=
p(s; x; 1; x1)
p(0; x0; 1; x1)

; s2 I ; x2Rd

and assume that g is C1;2(I � Rd; R>0). Let Zt
x1 = gx1(t; Xt) for t 2 I and observe that, by

construction, Zt
x1 is a martingale since

E[Zt
x1jFs] =E[Zt

x1jXs] =

Z
p(t; y; 1; x1)p(s;Xs; t; y)

p(0; x0; 1; x1)
dy=

p(s;Xs; 1; x1)
p(0; x0; 1; x1)

=Zs
x1; 06 s6 t< 1;

by the Markov property and the Chapman�Kolmogorov equation. De�ne the measure Px1

on F1 as the extension of the family (Pt
x1)t2I where dPt

x1 = Zt dPjFt and observe that for all
0< t1< ���< tn< 1 and bounded test function f we have

Z
f(Xt1; :::; Xtn; x1)p(tn;Xtn; 1; x1)dx1=EP[f(Xt1; :::; Xtn;X1)jFtn]

by Markov property. Then taking expectation wrt P we obtain

EP[f(Xt1; :::;Xtn; X1)] =

Z
EPx1[f(Xt1; :::;Xtn; x1)]p(0; x0; 1; x1)dx1

which shows that letting �f(y) :=EPy[f(Xt1; :::;Xtn; x1)] for y 2Rd, we have

EP[f(Xt1; :::; Xtn; X1)r(X1)] =EP[�f(X1)r(X1)]

for any bounded measurable function r. In particular �f(X1)=EP[f(Xt1; :::; Xtn;X1)jX1] and
�f is a regular conditional probability for P given �(X1). We conclude that Px1 is obtained by
h�transforming P via the function g, in particular that under the measure Px1 the Ito di�usion
X has a new drift bx1 given by :

bx1(t;Xt)= b(t; Xt)+ (��T)(t;Xt)rlog p(t; Xt; 1; x1); t2 I:

Usually the additional logarithmic derivative of the transition density become singular as t!1.
This accounts for the fact that the di�usion must satisfy Xt!x1 when t!1 and the martingale
part of the di�usion has to be counterbalances by a the strong drift in order for this to happen
with probability one.

Exercise 2. Compute the drift in the case of X being a Brownian motion in Rd.

1.4 Di�usions conditioned to stay in a given domain

We want to give an idea of the method used by Pinsky [3] to study a Markovian di�usion process
X on Rd conditioned to stay in a given subdomain D �Rd. For more details please refer to
the original paper.
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Let D �Rd an open bounded and connected set and let �D= inf ft> 0:Xt2Dg. Let (X;Px)
be a Markov process satisfying the SDE

dXt= b(Xt)dt+ �(Xt)dBt; X0=x:

where B in a Brownian motion in Rm. Let L= b:r+
1

2
��T :r2 the generator of X. Fix T > 0

and de�ne the measure Qx
T(�)=Px(�j�D>T ) for the process X conditioned to stay in D up to

time T . We assume that the function

gT(x)=Px(�D>T ) x2D

is in C2(D) and that

lim
T!1

rgT(x)
gT(x)

=
r'0(x)
'0(x)

uniformly on compact subsets of D. Here '0 is the eigenfunction of L with Dirichlet boundary
conditions corresponding to the real simple eigenvalue �0. We will assume that '0 > 0 on D
and that '0 = 0 on @D. Let MT be the process Mt

T := gT¡t(Xt^�D)/ g
T(X0), by the Markov

property of X we have

EQx
T [H] =

Ex[H I�D>T ]
gT(x)

=
Ex[HgT(Xt)I�D>t]

gT(x)
=

Ex[HgT(Xt^�D)]
gT(x)

=Ex[HMt
T ]

for any t <T and any r.v. H bounded and Ft measurable. Moreover

E[Mt
T¡tjFs] = E[PXt(�D > T ¡ t)I�D>tjFs] = PXs^�D

(�D > T ¡ s) = gT¡s(Xs^�D) = Ms
T ;

t> s> 0:

Note that under Qx
T we have Qx

T(�D6 t) = 0 so that under Qx
T the process X takes values in

D. By Doob's h-transform this implies that, under Qx
T the process X is an Itô di�usion in D

with di�usion matrix � jD and drift

b~T(x)= b(x)+
rgT(x)
gT(x)

; x2D:

Under some technical assumptions on the behaviour of gT as T ! 1 it is possible to show
that on any bounded interval [0; S] the process (X;Qx

T) converges in law, as T!1, to a weak
solution (X;Qx) of the SDE with di�usion matrix � and drift

b~(x)= lim
T!1

b~T(x)= b(x)+ (��T)(x)
r'0(x)
'0(x)

; x2D:

The corresponding law (X;Qx) can be understood as the law of original process conditioned
never to leave D.
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Example 8. (Brownian motion conditioned to stay positive) Let X be a Brownian motion on
R starting at x0 2 (0; L) for some L> 0. Let Q be the measure obtained by conditioning the
Brownian motion to hit L before 0:

dQjF1=
IAdPjF1
P(A)

;

where A= fT = +1 orXT = Lg and T = inf ft> 0:Xt 2 (0; L)g. Note that P(T =+1) = 0.
Letting h(x)= (x/x0) the process Zt=h(Xt

T) is a martingale starting at 1 and dQ

dP
jFt=Zt for all

t> 0. By Girsanov theorem under Q the process X satis�es the SDE (on a random interval,
until Xt=L for the �rst time)

dXt=dX~t+
dt
Xt
; t2 [0; T ]

starting at x0, where X~ is a Q-Brownian motion on [0; T ]. In particular this solution to the
SDE never touches 0. Moreover as L!1 we have T!1 P�p.s.. This suggests to de�ne Q by
dQ

dP
jFt=Xt

T0/x0> 0 for all t> 0 where T0= inf ft> 0:Xt< 0g. Now, XT0 is a positive martingale
(why?) so Q is well de�ned, but singular wrt. P on F1 since (by recurrence of the BM)
P(T0<1)= 1 while Q(T0<1)= 0 by de�nition. In this case the process X satis�es the SDE

dXt=dX~t+
dt
Xt
; t> 0;

where now X~ is a Q-Brownian motion on R>0.

Example 9. (Brownian motion conditioned to stay in D=(0; �)) Let X be a Brownian motion
under P. In this case the �rst Dirichlet eigenfunction of the Laplacian in D is '0(x) = sin(x)
and �=1 the corresponding eigenvalue. Let h(t; x)= et'0(x). Then Zt= h(t; Xt)/h(0; x0) is a
P�martingale (by Itô formula) and we can de�ne the measure Q with density Zt wrt P on Ft.
Under Q the process X satis�es the SDE

dXt=dBt+
cos(Xt)
sin(Xt)

dt:

Example 10. (Brownian motion in a Weyl chamber). Let X=(X1; :::;Xn) be a n�dimensional
Brownian motion starting at x02S where S �Rn is the Weyl chamber, that is the set

S= fx=(x1; :::; xn)2Rn: x1<x2< ���<xng:

Consider the function h(x)=
Q

i<j
(xj¡ xi)/

Q
i<j

(x0
j¡ x0i) and let T0= inf ft> 0: h(Xt)= 0g.

One can check that h is harmonic in S. Performing the h transform with this function we obtain
a system of interacting Brownian motions on R satisfying, under Q:

dXt
i=

X
j=/ i

1

X i¡X j
dt+dBt

i; i=1; :::; n; t> 0:

In particular this shows that under Q the processes (X i)i never intersects and preserve their
linear order. This process is called Dyson's Brownian motion [1] and coincide with the process
describing the evolution of eigenvalues of a natural continuous di�usion in the space of sym-
metric n�n matrices.
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1.5 Exponential tilting

As seen in the previous examples and in many applications we are required to study the
measures PL on (
;F1) obtained from P via exponential �tilting� with a given local continuous
P�martingale L (started at 0):

dPLjFt=E(L)t dPjFt; t> 0: (9)

In order for this construction to make sense and PL be well de�ned, we need (E(L)t)t>0 to be a
(true) martingale and not just a local one (otherwise we cannot even guarantee that PL(
)=1).
Moreover the fact that the family of measures dPt

L=E(L)tdPjFt on (
;Ft) indenti�es a unique
measure PL on (
;F1) via PLjFt=Pt

L is due to Kolmogorov�Daniell extension theorem: indeed
the family is consistent Pt

LjFs=Ps
L i� E(L) is a martingale.

In a �nite horizon I = [0; t�] we need to ensure that E[E(L)t�] = 1:

Lemma 11. A positive local martingale M such that E[M0]<1 is a supermartingale and it
converges a:s: as t!1 to a limit M1> 0 such that E[M1]6E[M0]. If E[M1] =E[M0] then
M is a UI martingale.

Proof. Let (Tn)n>0 a reducing family for (Mt¡M0)t>0, then for all 06 s6 t

E[Mt
Tn¡M0jFs] =E[Mt

TnjFs]¡M0=Ms
Tn¡M0:

By the conditional form of Fatou's lemma (and the integrability of M0)

E[MtjFs] =E
h
liminf

n
Mt

Tn
���Fsi6 liminf

n
E[Mt

TnjFs] =Ms:

We will assume (without proof) that a positive continuous supermartingale converges a.s. The
next exercise completes the proof. �

Exercise 3. Let M be a positive continuous supermartingale such that E[M0] < 1. Let
M1 = limt!1Mt (assumed to exist P�a.s.). Show that if E[M1] = E[M0] then M is a UI
martingale. [Hint: prove that E[M1jFt]6Mt and that E[Mt] =E[M0] and conclude.]

The next results describes su�cient conditions under which we can ensure the crucial property
E[E(L)1] = 1 when L0 = 0. As just shown in Lemma 11 this implies that (E(L)t)t>0 is a
UI martingale. Condition (11) below is called Novikov's condition. Condition (10) is due to
Krylov [2] from which the proof below is taken.

Theorem 12. (Novikov, Krylov) Let L be a local martingale starting at 0 and assume that

lim
"#0

" logE[exp((1¡ ")[L]1/2)] = 0 (10)

then E[E(L)1] = 1. In particular this holds if

E[exp([L]1/2)]<1: (11)
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Proof. We will start by proving the following weaker statement:

9p0> 1:E[exp(p0[L]1/2)]<+1=)E[E(L)1] = 1:

Let (Tn)n>1 be a family of stopping times reducing L and such that Tn6n for all n> 1. Then
for any r> 1 we have

E[(E(LTn)1)r] =E[exp(rL1
Tn¡ r [LTn]1/2)] =E[exp(rL1

Tn¡ r2 p[LTn]1/2)exp((r2p¡ r)[LTn]1/
2)]

by Hölder inequality (with p; q > 1 and p¡1+ q¡1=1)

E[(E(LTn)1)r]6 (E[E(rpLTn)1])1/p(E[exp( 
(r; p)[LTn]1/2)])1/q;

where


(r; p) := q(r2p¡ r)= r2p¡ r
1¡ p¡1

= p r
rp¡ 1
p¡ 1 > 1:

When r! 1 + , 
(r; p)! p+ so we can choose 1< p < p0 and r= 1+ " for su�ciently small
">0 to ensure that 
(r; p)6 p0. With this choice, using the fact that E(rpLTn) is a martingale,
that [LTn]16 [L]n6 [L]1 and the hypothesis of (11), we get

E[(E(LTn)1)r]6 (E[exp( 
(r; p)[L]1/2)])1/q6 (E[exp(p0[L]1/2)])1/q<+1:

Since r > 1, the fact that supnE[(E(LTn)1)r] < +1 implies that the family (E(LTn)1)n is
uniformly integrable for any t> 0. From this we conclude that E(E(L)1)=E[limn E(LTn)1] =
limnE[ E(LTn)1] = 1 so (11) is proven.

Let us go back to the proof of the Lemma. Take "2(0;1) and observe that letting p0=(1+")2>1
we have

E[exp(p0[(1¡ ")L]1/2)] =E[exp((1¡ "2)[L]1/2)]<1:

which by (11) implies that E[E((1¡ ")L)1] = 1. By Hölder inequality,

1=E[E((1¡ ")L)1] =E[exp((1¡ ")(L1¡ [L]1/2))exp((1¡ ")"[L]1/2)]

6(E[E(L)1])(1¡") (E[exp((1¡ ")[L]1/2)])":

Letting "!0 we obtain 16E[E(L)1] due to (10). This concludes our argument since we already
know that E[E(L)1]6 1 (Fatou). �

Remark 13. The conditions (10) and (11) are not necessary for E(L) to be a martingale.
Another well known su�cient condition is Kazamaki condition

E[exp(L1/2)]<+1; (12)

which is weaker than Novikov's. For more details refer to Revuz and Yor [4].
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1.6 Tilting via a Brownian local martingale

Let (
; F = F1; F�; P) carry a d�dimensional Brownian motion B and let b an adapted Rd-
valued process for which Z

0

t

jbsj2ds<+1; P¡ a:s: 8t> 0:

Let Lb be the scalar continous local martingale

Lt
b :=

Z
0

t

bs:dBs; t> 0;

assume that E(Lb) is a martingale and de�ne Pb :=PL as in eq. (9). The process B satis�es the
equation

dBt= btdt+dWt; t> 0;

where W is a Pb�Brownian motion.

Example 14. (Solutions to SDEs) Exponential tilting via the martingale Lb is useful to
construct (weak) solutions to SDEs with a general class of drift coe�cients. It will be convenient
to assume that 
=C(R>0;Rd), that P is the d�dimensional Wiener measure and that X is the
canonical process on 
 and that the �ltration F� is generated by X. We consider a predictable
Rd-valued process b̂ given by a function b:R>0�
!Rd via b̂t(!)= bt(X(!)) and we denote it
b̂=:b(X). By tiltingP via Lb(X) we obtain that, under Pb the processX is a solution of the SDE

dXt= bt(X)+dWt; t> 0;

provided E(Lb(X)) is a martingale. A natural condition on b which guaratees the martingale
property is

jbt(x)j6Ct(1+ kxk1;[0;t]); t> 0; x2
 (13)

where Ct<+1 for all t> 0 (see next exercise).

Exercise 4.

a) Prove that if

jbt(x)j6Ct(1+ jxtj); t> 0; x2
;

then Novikov's condition holds for all t> 0, i.e.

E

�
exp

�Z
0

t

jbs(X)j2ds
��

<+1; t> 0:

[Hint: show that the condition holds for t small enough and then use the Markov property
to extend to all t]
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b) Prove that

P(kXk[0;t]>r)6Ce¡r2/2t t> 0; r> 0:

[Hint: use Doob's inequality for the submartingale e�Xt
i

and optimize over �> 0]

c) Prove the same result as in (a) under the more general assumption (13). [Hint: for small
time use (b) to estimate the size of the maximum of the Brownian motion, extend to all
times via the appropriate Markov process]

More generally, solutions to SDEs with coe�cients b; � (in general path dependent) are trans-
formed to solutions:

Corollary 15. (Drift transformation of SDEs) If (X;B;P) is a weak solution to

dXt= bt(X)dt+ �t(X)dBt

and Ct= ct(X) is such that E(LC) is a martingale then (X;B~ ;PC) is a weak solution to

dXt= b~t(X)dt+ �t(X)dB~t

where the new drift is given by b~= b+�c and dB~t=dBt¡ ct(X)dt.

Exercise 5. Generalise Girsanov transformation to a martingale problem MP(x0; b; a).

Exercise 6. Use Girsanov transform to prove the uniqueness in law of the weak solution of
the SDE

dXt= bt(X)dt+dBt

where b:R>0�C(R>0;Rd)!Rd is a bounded, previsible drift.
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