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1 The Brownian martingale representation theorem

The aim of this note is to prove a nice and useful result about representation of martingales in a
Brownian �ltration. In all the section we will assume that (
;F ;F�;P) is a �ltered probability
space endowed with a d-dimensional Brownian motion X and such that F� is the canonical
�ltration of X (P-completed, right�continuous) and that F =F1.

We want to prove that

Theorem 1. Let �2L2(
;F ;P) then there exists a unique predictable process F 2LP2 (R+�
;
Rd) such that

E[�jFt] =E[�]+

Z
0

t

Fs:dXs; t> 0:

We will present a �Markovian� proof of this result taken from [6] and inspired by the work of
Meyer [5]. We need some preliminary result. Let P the transition operator of the Brownian
motion:

Ptf(x) :=

Z
Rd

f(y)
e
¡ jx¡yj

2

2t

(2�t)d/2
dy; x2Rd; t > 0

and U� the resolvent operator

U� f(x) :=

Z
0

1
e¡�sPs f(x) d s; x2Rd; �> 0:

Note that if f 2Cb(Rd) then (�¡�)U�f = f . Now recall the Stone�Weierstrass theorem.

Theorem 2. (Stone�Weierstrass) Suppose X is a compact Hausdor� space and A is a
subalgebra of C(X ) which contains a non-zero constant function. Then A is dense in C(X ) if
and only if it separates points.

The following key lemma, giving the density in Lp(
; F ; P) of a special algebra of random
variables, is due to Meyer.

Lemma 3. Let C �L1(
;F ;P) be the algebra generated by functions of the form

��(f) :=

Z
0

1
e¡�s f(Xs) d s
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for � > 0 and f 2 C0
1(Rd) (compactly supported smooth functions). Then C is dense in

Lp(
;F ;P) for p> 1.

Proof. Step 1. Restrict to FT. Let F 2Lp(
;F ;P) and FT =E[F jFT ]. By Doob's convergence
theorem FT! F a.s. and in Lp when T !1. So we can restrict ourselves to show that C is
dense in Lp(
;FT ;P) for each �xed T > 0.

Step 2. Restrict to tensor cylinder functions. Now we want to prove that the algebra of functions
of the form Y

i=1

n

gi(Xti) (1)

for gi2C0(Rd) and ti2 [0; T ], is dense in Lp(
;FT ;P). Indeed let ftigi>0 a dense set of times
in [0; T ] and G� the �ltration given by Gn = �(Xti: 0 6 i 6 n) _ F0. Note that G1 = FT since
by continuity of the paths of the Brownian motion each event of the form fXt 2Bg for some
�xed t and Borel B belongs to G1. For F 2 Lp(
;FT ;P) let Fn=E[F jGn]. Again by Doob's
theorem we have Fn! F a.s. and in Lp, morever there exists a Borel function fn such that
Fn= fn(Xt1; :::;Xtn). But any such r.v. can be approximated in Lp(
;FT ;P) by 'n(Xt1; :::;Xtn)
where 'n is C0. By the Stone�Weierstrass theorem this function can be approximated uniformly
(on its compact support) by polynomials for which it is easy to see that the factorization (1)
holds. In order to have a uniform approximation everywhere it is enough to multiply the
polynomials by an appropriate C0

1 localization function which can be chosen in factorized form.

Step 3. To exponential integrals in time. By continuity of the Brownian paths we can �nd
functions hi2C0([0; T ];R) such that

Y
i=1

n Z
0

T

gi(Xs)hi(s)ds

approximate (1) arbitrarily well in Lp. Again by Stone�Weierstrass we can approximate each
of the functions t 7! hi by linear combinations h~i of exponential functions (s 7! e¡�s)�>0 since
these functions separate the points of [0; T ]. This can be done so that jhi(t)¡h~i(t)j6 " where
" can be chosen arbitrarily small. Now

����Z
0

T

gi(Xs)
¡
hi(s)¡h~i(s)

�
ds

����6 kgk1T"CHECK!!!

This estimate allows to control the error in the integral. So we conclude that we can approximate
any element of Lp(
;FX ;P) by linear combinations of elements of C. �

Proof. (of Theorem 1) Step 1. Representation of elements of C. Conditional expectations of
elements of C can be computed explicitly. By the Markov property

E[��(f)jFt] =
Z
0

t

e¡�s f(Xs) d s + e¡�t
Z
0

1
e¡�s Ps f(Xt) d s =

Z
0

t

e¡�s f(Xs) d s +

e¡�tU� f(Xt):
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For a more general element of C we have

Y
i

��i(fi)=
X
�2Sn

Z
0<s1<���<sn

Y
i

[(Isi6t+ Isi>t) e
¡��(i)si f�(i)(Xsi)] d s1 ��� d sn

=
X
k=0

n X
�2Sn

Z
0<s1<���<sn

Isk6t;sk+1>t
Y
i

[e¡��(i)si f�(i)(Xsi)] d s1 ��� d sn

=
X
k=0

n X
�2Sn

Vt
�;k(X)

Z
t<sk+1<���<sn

Y
i=k+1

n

[e¡��(i)si f�(i)(Xsi)] d sk+1 ��� d sn

where

Vt
�;k(X) :=

Z
0<s1<���<sk<t

Y
i=1

k

[e¡��(i)si f�(i)(Xsi)] d s1 ��� d sk:

An easy computation shows that, again by the Markov property,

E[

Z
t<sk+1<���<sn

Y
i=k+1

n

[e¡��(i)si f�(i)(Xsi)] d sk+1 ��� d snjFt] =

=e¡�(�;k)tU�(�;k) (f�(k+1)U
�(s,k+1)(f�(k+2)���U��(n)(f�(n))))(Xt)

where �(�;k) :=��(k+1)+ ���+��(n). This gives the claimed explicit expression of the conditional
probability:

Mt=E[
Y
i

��i(fi)jFt] =
X
k=0

n X
�2Sn

Vt
�;k(X)e¡�(�;k)tU�(�;k)(H�;k)(Xt)

where

H�;k(x) := f�(k+1)(x)U
�(�;k+1) (f�(k+2) ���U��(n)(f�(n)))(x):

This formula in particular shows that M is a continuous martingale since t 7! Vt
�;k(X) is

continuous and for any f 2C01 the function x 7!U�f(x) is C01. By Itô formula we have

dU�(�;k)(H�;k)(Xt)=rU�(�;k)(H�;k)(Xt) dXt+
1
2
�U�(�;k)(H�;k)(Xt) d t:

This allows us to equate the two continuous local martingales :

Mt¡M0=

Z
0

t

FsdXs; t> 0:

with

Ft :=
X
k=0

n X
�2Sn

Vt
�;k(X)e¡�(�;k)trU�(�;k)(H�;k)(Xt):

This shows thatM can be written as a stochastic integral wrtX. So we have proven the theorem
for any �2C.
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Step 2. General case. For a general � 2 L2, by Lemma 3 we can choose a sequence (�n 2 C)n
such that �n!� in L2. Let Mt

n :=E[�njFt] and Mt:=E[F|Ft]. By Doob's maximal inequality
(here we need càdlàg, so the right�continuity of the �ltration), and passing to a subsequence
if necessary, we can assume that Mn!M uniformly on any �nite time interval. By Step 1,
there exists a sequence of LP2 processes (F n)n such that

Mt
n=M0

n+

Z
0

t

Fs
ndXs; t> 0:

Therefore

E[(Mt
n¡Mt

m)2] =E([Mn¡Mm]t)=E

Z
0

t

jFsn¡Fsmj2d s; t> 0;

which implies that F n is Cauchy and converges in LP
2 (
� [0; 1];Rd) to a predictable process

F and that

Mt=M0+

Z
0

t

FsdXs; t> 0: �

Corollary 4. All local martingales in a Brownian �ltration are continuous.

Exercise 1. Prove Corollary 4.

2 The variational properties of Girsanov transform

We assume that (
;F ;F�; �) is the canonical d-dimensional Wiener space. That is 
=C(R>0;
Rd), F =B(
), X is the canonical process which under � is a d-dimensional Brownian motion
and the �ltration F�=F�X;� is completed.

De�nition 5. (Relative entropy) Let � be a Polish space endowed with its Borel ���eld
B(�), let L1(�); M1(�) resp. the space of bounded measurable functions and the space of
probability measures on � with the weak topology. Given two elements �;� 2M1(�) the relative
entropy of � wrt. � is de�ned as

H(� j�) := sup
'2L1(�)

(�(')¡ log �(e')): (2)

The supremum in (2) can also be taken among continuous functions on � moreover we have
the convex dual formula

log �(e')= sup
�2M1(�)

[�(')¡H(� j�)]:

Lemma 6. The function � 7! H(� j�) is non�negative, lower semi�continuous, convex and
moreover

H(� j�) :=

( R
�
log d�

d�
d� if �� �;

+1 otherwise.
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Proof. Since log(x)6x¡ 1,

H(� j�)=¡
Z
W
log

d�
d�

d�>¡
Z
W

d�
d�

d�+1=0:

Moreover

lim
n
H(�nj�)> lim

n
(�n(')¡ log �(e'))= (�(')¡ log �(e'))

and optimizing over ' we obtain limnH(�nj�) >H(� j�). With a similar argument we prove
convexity. �

We state some elementary but interesting relations between relative entropy and the Girsanov
transform. In the following we call a drift a predictable function u:R>0�
!Rd such that

kukH2 :=
Z
0

1
jusj2ds

is �nite ��almost surely and denote I(u)t :=
R
0

t
usds, t>0. Note that equivalently we can see u

as a predictable function of X : ut(!)=ut(X�(!)). In order to stress the dependence on X we
will sometimes write u= u(X).

Lemma 7. Let u be a drift and � the law of X + I(u(X)) under �. Then

H(� j�)6 1
2
E�ku(X)kH2

Proof. Assume that kukH is almost surely bounded. By Novikov's criterion we can de�ne the
measure � with density

d�

d�
= E

�
¡
Z
0

�
usdXs

�
1

with respect to �. Under � the process X +I(u(X)) is a Brownian motion, that is, it has law
�. Then

E�(f(X))=E�(f(X + I(u(X)))); E�(f(X))=E�(f(X + I(u(X))))

and using the de�nition of entropy we have

H(� j�)= sup
'2L1(
)

(�(')¡ log �(e'))

= sup
'2L1(
)

fE�['(X + I(u(X)))]¡ logE�[exp'(X +I(u(X)))]g

6 sup
'2L1(
)

(�(')¡ log �(e'))=H(�j�)=¡E�

�
log E

�
¡
Z
0

�
usdXs

�
1

�

=E�

�Z
0

1
usdXs+

1
2
kukH2

�
=
1
2
E�[kukH2 ]:
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In the case of unbounded drifts we can introduce a sequence of appropriate stopping times
(�n)n>1 de�ned as �n := inf (t>0:ku I[0;t]kH2 >n) and stopped drifts utn=ut It6�n so that kunkH is
bounded for all n> 1 and kunkH%kukH as n!1. If kukH=+1 with positive ��probability
we do not have anything to prove, so assume that kukH<+1 ��almost surely. Then �n!1
as n!1 and I(un)!I(u) uniformly on compacts. As a result X + I(un) converges weakly
to X + I(u) and, denoting �n and � the respective laws, we have, by lower�semicontinuity of
the entropy

H(� j�)6 liminf
n

H(�nj�)6 liminf
n

1
2
E�[kunkH2 ] =

1
2
E�[kukH2 ]

(the last step by monotone convergence). �

2.1 Föllmer's drift

A natural question is in which condition equality is achieved in Lemma 7. We have the following
Lemma, taken from Föllmer [3], which shows that any measure � � � is associated with a
speci�c drift.

Lemma 8. (Föllmer's drift) Assume ���. There exists a unique drift u such that kukH<1
almost surely, X ¡I(u) is a ��Brownian motion and

H(� j�)= 1
2
E�[kukH2 ]:

Proof. The density Z=d� /d� de�nes a positive martingale via Zt :=E�[Z jFt]. Let Zt=E(L)t.
Let (�n)n a reducing sequence for L (which may be just a càdlàg local martingale). By the
martingale representation theorem we have L�n=

R
0

t
un dX , so in particular utnIt<�m= ut

mIt<�m
for all m6 n and t> 0 and then Lt=

R
0

t
us dXs is a continuous local martingale (since it is a

stochastic integral) where ut= limnut
nIt<�n. Now,

H(� j�)=E�

�
log

d�
d�

�
=E�

�
log

d�
d�n

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
H(� j�n)>0

+E�

�
log

d�n

d�

�

>E�

�
log

d�n

d�

�
=E�

�Z
0

�n

usdXs¡
1
2

Z
0

�n

jusj2ds
�
=
1
2
E�

�Z
0

�n

jusj2ds
�
:

By monotone convergence we have E�(kukH2 )6 2H(� j�). Assume H(� j�)<+1. This implies
that under � the process L~ = L ¡ [L] is an L2 bounded continuous martingale since [L~]1 =
[L]1= kukH2 and

H(� j�)=E�

�
L1¡

1
2
[L]1

�
=E�

�
L~1+

1
2
[L]1

�
=E�

�
L~1+

1
2
[L]1

�
=
1
2
E�(kukH2 ):

If H(� j�) = +1 by lower semicontinuity of the entropy we have H(�nj�)! +1 and since
�n = � jF�n we have also E�[

R
0

�n jusj2ds] = E�n[
R
0

�n jusj2ds] = H(�nj�) ! +1 so by monotone
convergence E�[

R
0

1 jusj2ds] = limnE�[
R
0

�n jusj2ds] = +1 which veri�es the formula also in this
case.
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For uniqueness just observe that if u~ and u are two drifts satis�ng the properties of the claim
then B=X ¡I(u) and B~ =X ¡I(u~) are two ��Brownian motions so M =B¡B~ =I(u~¡u) is
a continuous martingale. This implies that [M ]1= [I(u~¡u)]1=0 and thus that Mt=M0=0
for all t. That is ut(!)=u~t(!) for almost all t; !. �

For a class of nice densities we have precise informations about the Föllmer drift.

Lemma 9. Let � be a probability measure which are absolutely continuous wrt � with density Z
such that Z 2C and Z> " for some "> 0. Under � the canonical process X is a strong solution
of the SDE

dXt=ut(X)dt+dWt (3)

where W is a ��Brownian motion and u a drift such that

jut(x)¡ut(y)j6Lkx¡ yk1;[0;t]; x; y 2C(R>0;Rd) (4)

for some �nite constant L. Moreover

H(� j�)= 1
2
E�ku(X)k2:

We will call S� the class of such measures.

Proof. Let Zt(X) := E[Z jFt], by the proof of the Martingale Representation Theorem 1 we
have that

Zt(X)= 1+

Z
0

t

Fs(X)dXs; t> 0;

where Z(X) and F (X) are, respectively, linear combination of functions of the form

X
k=0

n X
�2Sn

Vt
�;k(X)e¡�(�;k)t U�(�;k)(H�;k)(Xt);

X
k=0

n X
�2Sn

Vt
�;k(X)e¡�(�;k)tr U�(�;k)(H�;k)(Xt);

for various choices of �> 0; f 2C01. Moreover Zt(X)> ", so it is clear that if we let

ut(x) :=
Ft(x)
Zt(x)

; x2C(R>0;Rd)

we will satisfy (4) and moreover

Zt(X)= 1+

Z
0

t

Zs(X)us(X)dXs:

This last relation implies that Z(X)=E(u(X)). So by Girsanov theorem, the canonical process
is a weak solution of the SDE (3). Due to condition (4) this SDE has the pathwise uniqueness
property, so by the Yamada�Watanabe the canonical process X is a strong solution of (3)
depending on the ��Brownian motion W . Finally

H(� j�)=E�log(Z)=E�

�Z
0

1
us(X)dXs¡

1
2
ku(X)k2

�
=E�

�Z
0

1
us(X)dWs+

1
2
ku(X)k2

�
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if E�ku(X)k2<+1 the process
R
0

1
us(X)dWs is a L2 martingale so its expectation vanish. A

localization argument shows that the equality holds also in the case E�ku(X)k2=+1. �

2.2 The Boué�Dupuis formula

The aim of this section is to prove the following variational caracterisation of expectations of
positive functions over the Wiener space, due to Boué and Dupuis [1]. The proof is taken from
Lehec [4].

Theorem 10. (Boué�Dupuis) For any function f :
!R measurable and bounded from below
we have

log
Z



efd�= sup
u

E�

�
f

�
X +

Z
0

�
us(X)ds

�
¡ 1
2
ku(X)k2

�

where the supremum is taken over all the adapted drifts.

Lemma 11. Let f :
!R be bounded from below. For every "> 0 there exists � 2S� such that

log
Z



efd�6
Z



fd� ¡H(� j�)+ ": (5)

Proof. By monotone convergence it is enough to consider bounded functions f and thatR


efd�=1. Let F = ef and let � be probability measure on 
. Using

x log(x)6 jx¡ 1j+ jx¡ 1j2/2; x> 0

we get

H(� j�)¡
Z
fd�6

Z ����GF ¡ 1
����Fd�+ 1

2

Z ����GF ¡ 1
����2Fd�6 kF ¡GkL1(�)+CfkF ¡GkL2(�)2

where G is the density of � and Cf is some constant depending only on the lowe bound of f
(recall that f is bounded from below). Given F and given the density of C in L2(�) we can
�nd an element G2C such that

kF ¡GkL1(�)+CfkF ¡GkL2(�)2 6 kF ¡GkL2(�)+CfkF ¡GkL2(�)2 6 "

and for which G> � for some � > 0. The proof is complete letting this G be the density of �
wrt � and observing that � 2S� by construction. �

Proof. (of Theorem 10) Let u be a drift and � the law of X +
R
0

�
us(X)ds. By Lemma 7 and

the variational caracterisation of the entropy (2) we have

E�

�
f

�
X +

Z
0

�
us(X)ds

�
¡ 1
2
ku(X)k2

�
6

Z
fd� ¡H(� j�)6 log

Z



efd�:
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On the other hand, given " > 0 there exists a probability measure � 2S� satisfying (5). Since
� 2S� Lemma 9 guarantee the existence of a strong drift z for which dX = z(X)dt+dW with
a ��Brownian motion W . Moreover X is a strong solution, so there exists a measurable map �
such that X=�(W ). As a consequence, letting u(W )= z(�(W )) we have dX=u(W )dt+dW .
With this choice we can writeZ
fd� ¡H(� j�) =E�

�
f

�
W +

Z
0

�
us(W )ds

��
¡ 1
2
E�[ku(W )k2] =E�

�
f

�
X +

Z
0

�
us(X)ds

�
¡

1
2
ku(X)k2

�
since the law of X under � coincides with the law of W under �. Then

log
Z



efd�6E�

�
f

�
X +

Z
0

�
us(X)ds

�
¡ 1
2
ku(X)k2

�
+ "

optimizing over u and letting "! 0 gives the claim. �

2.3 Some applications

A �rst consequence of Theorem 10 is a Gaussian bound on certain functionals of Brownian
motion.

Corollary 12. Let (E,d) some metric space and f : 
!E such that there exists an e2E for
which

d(f(x+ I(h)); e)6 c(x)(g(x)+ khkH); h2H

for �-a.e. x2
 where c2L2(�) and �(c g)<+1. Then for all �> 0

E�[exp[�d(f(X); e)]]6 exp(�2�(c2)/2+��(c g)):

In particular the random variable d(f(X); e) has Gaussian tails.

Proof. By the Boué�Dupuis formula we have

logE�[exp[�d(f(X); e)]] = sup
u

E�

�
�d(f(X +I(u)); e)¡ 1

2
kukH2

�
By hypothesis on f :

logE�[exp[�d(f(X); e)]]6 sup
u

E�

�
�c(X)(g(X)+ kukH)¡

1
2
kukH2

�
:

Now we can take an unrestricted sup over the r.h.s. with respect to all measurable functions
�: 
!R+ and obtain

logE�[exp[�d(f(X); e)]]6E�[�c(X)g(X)]+ sup
�

E�

�
�c(X)�(X)¡ 1

2
�(X)2

�

6E�[�c(X)g(X)]+
�2

2
E�[c(X)2]¡

1
2
sup
�

E�[(�(X)¡�c(X))2]6�E�[c(X)g(X)]+
�2

2
E�[c(X)2]:

9



�

Another application of these considerations is the derivation of a transportation cost inequality
of Talagrand in the case of Wiener measure.

Let �; � be two probability measures on 
 and de�ne

T2(�; �) := inf
�

�Z

�


 ddt(!¡! 0)

H

2

�(d!� d! 0)
�
1/2

where the in�mum is taken over all the probability measures � on 
�
 with �xed marginals
�; �, i.e. such that !(��
)= � and !(
� �)= �.

Theorem 13. We have

T2(�; �)6 [2H(� j�)]1/2:

Proof. It is enough to consider the case H(� j�)<+1. Then Lemma 8 state the existence of a
drift u and a Brownian motion B such that X =B+I(u) has law � and 2H(� j�)=E�kukH2 .
Let � be the law of (X;B). The �rst marginal of � is � and the second is � so

T2(� ; �)
26E

� ddt(X ¡B)

H

2
�
=E[kukH2 ] = 2H(� j�):

�

3 Small noise and large deviations

In this section we investigate the behaviour of probabilities of certain functionals of Brownian
motion. Applications will be given to small noise limit of stochastic di�erential equations. Let
us �rst introduce some general tools from Large Deviations theory. In the following E will be
a Polish space (separable completely metrizable topological space).

De�nition 14. A function I: E ! [0; +1] is called a (good) rate function on E if the sets
I¡1[0;M ]�E are compacts for all M <+1.

In particular a rate function is always lower semicontinuous, that is limy!x I(y) > I(x), or
equivalently that level sets I¡1[0;M ] are closed.

De�nition 15. Let I be a rate function on E. A family (Y ")" of random elements of E satis�es
the Laplace principle on E with rate function I (and rate 1/") if for all functions h 2 Cb(E)
(continuous and bounded functions) we have

¡lim
"!0

"logE[exp(¡h(Y ")/")] = inf
x2E

[I(x)+ h(x)]: (6)

By general results this Laplace principle is equivalent in the Polish setting to exponential
estimates of events for the family (Y ")":

10



De�nition 16. A family (Y ")" of random elements of E satis�es the Large Deviations principle
on E with rate function I (and rate 1/") if for any open set A2E and closed set B 2E we have

liminf
"!0

" logP(Y "2A)>¡ inf
x2A

I(x); limsup
"!0

" logP(Y "2B)6¡ inf
x2B

I(x):

Exercise 2. Prove the equivalence between the Laplace principle and the Large Deviations
principle.

We will consider families of random variable (Y ")" obtained from a �xed Brownian motion X
via measurable mappings G": 
!E , "> 0.

Let UM �L2(R>0;Rd) the subset of elements u such that kukH6M and let UM �LP2 (R>0�
;
Rd) the subset of predictable L2 processes u such that kukH6M ��almost surely. Note that
UM is a compact Polish space with respect to the weak�topology of L2(R>0;Rd).

We will follow closely [2] and make the following general hypothesis on the family (G")".

Hypothesis 17. There exists measurable mapping G0: 
!E such that the following holds

i. for every M < 1 and any family (u")" � UM such that u" converges in distribution
(as random elements of UM) to u we have that G"(X + "¡1/2I(u")) ! G0(I(u)) in
distribution (as random elements of E);

ii. for every M <1 the set ¡M := fG0(I(u)):u2UMg is a compact subset of E.

For each x2E de�ne

I(x) :=
1
2

inf
u2¡(x)

kukH2 (7)

where the inf is taken over the set ¡(x)�H of all u2H such that x=G0(I(u)) and is taken to
be +1 if this set is empty. Under Hypothesis 17 the function I is a rate function on E .

Theorem 18. Under Hypothesis 17 the family (Y "=G"(X))" satis�es a Laplace principle with
rate function I as de�ned in ( 7).

Proof. We need to show that (6) holds for all h2Cb(E).

Step 1: Lower bound. By the Boué�Dupuis formula

¡"logE�[exp(¡h(Y ")/")]= inf
u
E�

�
1
2
k"1/2ukH2 +h(G"(X +I(u)))

�

=inf
u
E�

�
1
2
kukH2 +h(G"(X + "¡1/2I(u)))

�
:

Fix � > 0. For every "> 0 there exists u" such that

¡"logE�[exp(¡h(Y ")/")]>E�

�
1
2
ku"kH2 +h(G"(X + "¡1/2I(u")))

�
¡ �:

11



Moreover

E�

�
1
2
ku"kH2

�
6 khk1¡ "logE[exp(¡h(X")/")] + �6 2khk1+ �:

Modulo taking N large enough we can replace u" by the stopped process ut
";N=ut

"It6�";N where
�";N = inf ft> 0: ku"I[0;t]kH>N g. Indeed observe that

P(u"=/ u";N)6P(ku"kH>N)6 E�[ku"kH2 ]
N

6 4khk1+2�
N

uniformly in ". This implies that we can choose N large enough uniformly in " so that

jE�[h(G"(X + "¡1/2I(u")))]¡E�[h(G"(X + "¡1/2I(u";N)))]j6 khk1P(u"=/ u";N)6 �

and of course E�[ku"kH2 ]>E�[ku";NkH2 ], so we have

¡"logE�[exp(¡h(Y ")/")]>E�

�
1
2
ku";NkH2 + h(G"(X + "¡1/2I(u";N)))

�
¡ 2�:

In this situation ku";NkH6N almost surely for every ">0 so we can extract a weakly converging
subsequence (still denoted u";N) and let u2UN be its limit. Using Hypothesis 17 we have

liminf
"!0

¡ "logE�[exp(¡h(Y ")/")]>E�

�
1
2
kukH2 +h(G0(I(u)))

�
¡ 2�

> inf
x2E

inf
v2¡(x)

�
1
2
k�kH2 +h(x)

�
¡ 2�> inf

x2E
[I(x)+ h(x)]¡ 2�:

Since � is arbitrary this completes the proof of the lower bound.

Step 2: Upper bound. Using that h is bounded we have I(h) := infx2E [I(x) + h(x)]<+1. Let
� > 0 and choose x02E such that I(x0)+h(x0)6 I(h)+ �/2. Moreover choose v2L2(R>0;Rd)
such that kvkH2 /26 I(x0)+ �/2 and x0= G(I(v)). By the Boué�Dupuis formula

limsup
"!0

¡ "logE�[exp(¡h(Y ")/")] = limsup
"!0

inf
u
E�

�
1
2
kukH2 + h(G"(X + "¡1/2I(u)))

�

6limsup
"!0

E�

�
1
2
kvkH2 +h(G"(X + "¡1/2I(v)))

�

=limsup
"!0

�
1
2
kvkH2 +E�[h(G"(X + "¡1/2I(v)))]

�
:

By assumption G"(X + "¡1/2I(v)) weakly converges to G(I(v))=x0 so

limsup
"!0

¡ "logE�[exp(¡h(Y ")/")]6 1
2
kvkH2 + h(x0)6 I(x0)+ h(x0)+ �/2= I(h)+ �:

Since � is arbitrary the proof is complete. �
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Example 19. The simplest situation is when E=
 and Y "="1/2X. In this case G0(I(u))=I(u)
and we leave to the readed to check that Hypothesis 17 holds. Then we have established that

¡lim
"!0

"logE�[exp(¡h("1/2X)/")] = inf
u2L2(R>0;Rd)

�
1
2
kukH2 + h(I(u))

�
: (8)

which is the Laplace version of Schilder's theorem about large deviations of Brownian motion.
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