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1 Regularity of stochastic processes

We analyse here general conditions under which a family of random variables defined on R* enjoys
a continuous version. Sufficient conditions are given by the theorem below, essentially due to Kol-
mogorov. However we will prove it by showing first a relation between the Holder norm and an integral
norm which is related to the theory of Besov spaces. Kolmogorov theorem can be seen as an application
of an embedding of Hoélder spaces into certain Besov spaces. From this point of view one can obtain
also useful informations about integrability of norms which do not enter the original formulation of
Kolmogorov theorem.

Theorem 1. (Kolmogorov) Let (X;);crr a family of random variables indezxed by a k-dimensional
parameter t € RF. Assume that for some p>0,a>k/p we have

E[| X — Xs|P] < |t — s|oP t,seRF (1)

then there exists a random variable X with values in C(RF;R) such that P(X;=X;)=1 for all t € R¥
and such that for all L>0, and y<a—k/p,

sup [ X (w)e —{(W)s|
t,s€[—L, L]k |t —s|

S CL,’Y((‘U) < 007

for P—almost all w € §2.

The proof of this theorem relies on a lemma due to Garcia, Rodemich et Rumsey which allows the
point-wise control on the regularity of a continuous function via an integral quantity. This formulation
of the GRR lemma is taken from [4] with a slight modification. See also [3].

In the lemma we consider a nice metric space (A,d) endowed with a measure m (on the Borel sets of A).
Denote B(z,r)={y € A:d(z,y) <r} the ball of radius r centered in = € A and with o (r) =inf,eam(B(x,
7)) the smallest volume of a ball of radius r according to m.

We need to assume that o(r) >0 for all » >0 and that if we denote
FAy= [ fm(ae) /m(a)

the mean of f on the Borel set A we have f(B(x,r))— f(x) as r— 0 for all 2 and continuous function
f

We will also fix a function W:R>o— R>¢ positive, increasing and convex and such that ¥(0) =0 and
denote with W~! its inverse : a positive, increasing and concave function.

To fix ideas one can think to A =0, 1] with Euclidean distance d(t,s) = |t — s|, m Lebesgue measure,
in this case o(r) =2r. And take ¥(x)=zP.

Lemma 2. [Garcia-Rodemich-Rumsey| Let f: A — R a continuous function on (A, d). Let
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Then

|£(t) = F(s)| < 18/0d(t’s)/2\11—1< 0(2)2 )dr.

Proof. For Borel sets A, B C A we have

o e )|

Letting d(A, B) =supteca,sepd(t, s) we can estimate the difference of the means as

o s o [ M St

and by Jensens’ inequality and convexity of W,

s [ [ w( LI yrdgnie) |

Which is boldly estimated as

7) - Fl <dd, By (oo ) ®

Now let f(t,7):= f(B(t,r)) and \y=d(t,s)/27% for k=0,1,... . Then

n—1 o)
F(E M) = £ 20 = S0 (F(t Awer) — (£, M0) Z F(t M) = F(t )|
k=0 k=0

= U
g (A1 + )V <—0(>\k+1)0(>\k)>

where we used eq. (2) noting that d(B(t,a), B(t,b)) =a+ b. We want to estimate this series via an
integral, easier to manipulate. So we note that

Ak+1+ Ak :327k71d(t, $) =6(Ak+1— Ak+2)

and that o(A\g) =0 (Ag41) = o(r) for all r < Ag41. Then

_ )\k+1 d(t,s)/2 U
t,An) — f(t, Xo)| <6 / < >dr_6/ \I’_1<—>dr
| f( ) — 0)| Z - 0 U(T)Z

Now it is enough to take the limit n — oo on the r.h.s. and use the continuity of f to conclude that
the same integral gives a upper bound on |f (¢, A,) — f(¢, Ao)|. Using again eq. (2) we have

_ _ d(t,s)/2
17t 20) = F(s. 20)| <3)\0‘I’_1<U(§\]0)2> <6/0 w-l(%,,f)g)dr

from which we obtain easily the claim. (]




Let us now prove now Theorem 1.

Proof. Fix L > 0. For every integer N >0 we consider the finite set Ay = (7% /2N)*N[~L, L]*¥ CR*
and apply Lemma 2 to the function X; defined on Ay and so trivially continuous. The measure my
is the normalized counting measure on Ay, d(t, s) = |t — s|? and W(x) = 2P. We can show aht there

exists an constant ¢>0 such tha o(r) > cr®/8 for all r >0 uniformly in N. A direct computation gives

X, — X,| <CUNPA(t, s) 2K/ Pp,

_ P
E| sup |Xt—k <Cp// <|Xt Xs|) Ht%SmN(dt)mN(dS)
tseAn d(t,s) 2R/ 0P AnxAy [t —s|® |t — s|P(B—a)

where we applied Fubini-Tonelli to exchange the integral with the expectation. This gives in turn

E(Z2)<CP  sup E(|Xt )// . (dt)mN(ds)
t,s€[—L,L]* [t —s|® AN></\N 5‘p(6

Xt_ s‘
ZN:= sup |—
tsehy |t —s|PT2R/P

So

where

The double integral is uniformly bounded in N if p(f — «) <k and in this way we obtain the uniform
integrability of the random variables (Zn)n. Moreover Ay C Any1 and as a consequence the family
(ZNn)n is increasing. By monotone convergence we have that

|Xt—XS|

ZOO::SllpZN: sup m

N t,s€Ng

is almost surely finite where Ag=UxA is a dense countable set in [~ L, L]*. Thanks to the condition
a >k /p we can choose 5 < «a+ k/p such that 8 — 2k /p > 0. This implies that, almost surely, the
random function X: Ag — R is Holder continuous of index V= B —2k/p<a—k/pand it admits a
continuous extension to all [—L, L]¥ which we will denote by X. It is now easy to see that condition (1)
implies the continuity in probablhty of X and then that P(X;=X J=1forallte[-L , L]*. Being L
arbitrary, we can build a consistent family of such continuous versions of X for an increasing sequence
of values of L and then obtain a continous version of X over all R¥. OJ

Example 3. If B is a standard one—dimensional Brownian motion we have
E|B; — Bs|P = C)plt —s|P/2.

Then, after Theorem 1, there exists a version of B which is Holder continuous for all v < 1/2. It is
easy to see that the Holder index cannot be 1/2. Indeed

B, —
1P< sup %:—}—oo):l. (3)

o<s<t<1 [t —s|

Let us show this. We start by giving a lower bound on the Holder norm. For all n >0, we consider the
partition {ty =k /n:k=0,...,n} C[0,1] and observe that

B
sup %/ sup A
0<s<t<1 [t —s]| k=0,....n—1



where Ay =By, — By, |/ [th41— tk|1/2. The r.v.s {Ag:k=0,...,n — 1} are an iid family with standard
Gaussian law, so

Pl sup MZL >P sup Ag>L)\=1-PA1<L)"—=1 for n— oco.
0<s<t<1 |t —s|"/ k=0,...,n—1

Being L arbitrary, we obtain eq. (3).

Exercise 1. Apply Lemma 2 to Brownian motion with the function ¥ (z)=e*** — 1. What estimation
this gives for p(6) =supy ¢ —s|<s | Bt — Bs|?

2 Regularity of SDEs and stochastic flows

Let (Vi: Ry x RY— Rd)k:(],...,m a family of time-dependent vectorfields on R¢ and for s >0 and z € R?
let t+—&54(x) the solution of the SDE

Ela)=a+" [ Valr.&urla) dBE )
k=0 ""%

where (Bk) k=1,..,m is a family of one-dimensional Brownian motions and where setting B? =t gives a
compact way to include a deterministic drift. We will assume that the vectorfields (Vi) are globally
Lipshitz and that it exists a constant M such that

[Vi(t, ) = Vi(t, y)| < Mz —y|  andthat  [Vi(t,2)| < M(1+][z])

uniformly in ¢ > 0. In these conditions the SDE (4) admits a unique strong solution adapted to the
filtration Fge = (Fst=0(By — Bs:u>s))+>s generated by the increments of the Brownian motion after
time s. By construction the process t+—&s¢(x) is almost surely continuous for fixed s, x.

We are going to investigate the pathwise regularity of the process (s,t,x)—E&s(z) with respect to all
the variables (s,t,x) jointly. Out basic tool will be the Kolmogorov/Garcia-Rodemich-Rumsey Lemma,
It6 formula and the Burkholder-Davis-Gundy inequalities. A very nice reference on the subject of
stochastic flows are the lecture notes and the book of Kunita [2, 1].

The main result will be the following;:

Theorem 4. There exists a random function (s, t, x) —&si(x) which is Holder continuous joinlty
in s,t,x of exponents o, o, B for all « <1/2 and 5 <1 and for which eq. (4) and the flow property
Eut(&su () =&si(x) are verified for all s,t,x almost surely.

Proof. The proof is a direct consequence of Theorem 1 and of the estimation
Elési(@) — € p(@)|P Sla =2/ [P+ (1+ |z |+ |2/ (|s — /P2 + [t = /) (5)

which we will prove in Theorem 8. Indeed, given a compact K C R% and T'>0, the bound (5) is sufficient
to apply Theorem 1 from which we obtain a continuous version in (s,t,z) €[0,T]? x K of &s(z) such
that

|6st(2) = € e(a)| SOk 1 p.ap(W) ([t = /|% + s = 8| + |z — 2"]F)

uniformly in s, ¢,z for all « <1/2 and 5 < 1. It is then easy to show the continuity of the stochastic
integral in eq. (4) and then deduce that the SDE is satisfied for all s,¢, 2 almost surely (the negligible set
does not depend on t, s,z). The flow property follows from the regularity of £s:(z) and Corollary 7. O



Remark 5. A map (s,t,x) — ¢s(z) satisfying ¢yt 0 ¢sy = ¢pst for all s <u <t is called a flow. We
proved that SDEs with regular coefficients give rise to a map & which is a stochastic flow.

Lemma 6. For allpe R, T>0 and € >0 we have
E(e +[&t(2)[*)? < Ce p,r(e + |2]?)P
E(e + |€st(2) — &st(y)[2)P < Cp,r(e + |z — y[?)?
for all 0 < s<t<T. The constant for the second inequality is uniform in €.
Proof. Let f(z):=(c+|z|?) and F(x):= f(z)P. An easy computation gives

ViF(z)=2f(z)P"'a  ViF(z)=2pf(x)P 2(f(z)0;;+2(p— D)), 4,j=1,...d

and if we denote Z;:= {4(x) then, by It6 formula applied to the semimartingale F'(Z;) we have

F(Z +Z/VF )dZE+ 2Z/v d(Zt, Z9),

where

le dfsr( )= Z Vki(Tafsr(x)) dBvlf’

k=0

ZZ ZJ Z V T, (T ( sr(w))d Bk Bl Z 7, Esr(T j(r,fsr(x)) de

k,1=0 k=1

since (B¥, BY);=t if k=1=1,...,m and 0 otherwise (in particular if k=0 or /=0, since B =t). Then

F(Z, +ZZ/VF Vi(r, Z,) dBF

i=1 k=0

wl

d m
Z Z / ViiF (Z)Vii(r, Z)\V(r, Z,)dr.

Let us take the expectation of this last quantity: the stochastic integral vanishes (easy to see) and
Zs=¢Ess(x) = as., so

d m t
EF(Z)=F(x %Z Z/ (V4 F(Z)Vi(r, 2V (r, Z,)) dr

To stimate the quantity in the integral we note that, by assumption |V (r,z)| <M (1+ |z|) < f(x)
(where the constant C. depends on ¢). So

\VEE(Z)Vir, 2V (r, Z,)| < C- F(Zy)
and

EF(Z) < F(z) +C. / "BF(Z,)dr.



By Gronwall inequality we can conclude and obtain the first bound in our statement. For the second we
proceed similarly. This time however we let Zy:=&s4(x) — s¢(y). The process Z; is still a semimartingale
such that

dZ =Y [Vi(r, &) =Vi(r, &:(y))dBY,
k=0
ZZ ZJ Z T, (T Vki(ra fsr(y))][vlg(r, Esr()) —ij(r, fsr(y))] dt
k=1

This time we have that

|Vki("“= Esr(T)) —V;g(T, Esr(Y))| < M [Esr(w) — Esr(y)| < Mf(ZT)1/2

independently of €. Again by Gronwall we can conclude. O
Exercise 2. Show that we have I [sup;es,77 (€ + |&se(2) — &oe(y)[H)P] < Cp,r(e + | — y[?)P.
Corollary 7. For all 0< s <u<t<T we have almost surely &u1(Esu()) =Esi(x) for all x € RY.

Proof. Lemma 6 and the Kolmorov theorem imply that for all fixed s, ¢, the map x+ &s¢(x) is almost
surely continuous (the exceptional set depending on s,t). Moreover it is easy to see that we can choose
the family of random variables

m t
xHZ/Vk(T,fsr(x))dBf
k=0 “*%

continuous in z. Indeed

E[Lth(r,fsr(x))dBf—Lth(r, fsr(y))dBfr

<0pE[/t|Vk(r, Esr(2)) =Vi(r, Esr(1)) ]2 dr]p/g
<Cp(t — S)p/21E[/t‘Vk(T, Esr()) —Vi(r, §Sr(y))|pd7“] (by Jensen)

t
<CoM (=9 E] ['leula) ~6rlp)lPar| - (by assumption
<Cp(t — )%z —y|P  (Lemma 6)

and so we can use Kolmogorov again to obtain a version of the stochastic integral which is continuous
in x and show that, for fixed s <wu <t, the integral equation

Eut(® x+2/vk  Eur(x)) dBF

is satisfied for all x € R% almost surely. If in this relation we replace = by the random quantity &, ()
we obtain

k=0 7Y

Let now £g(2) = Eur(Esu(®)) if £ > u and &,4(x) = E(x) otherwise. The process £y,(z) satisfies the
equation

fst l’—i—Z/Vk gsr dBk



for all t > s and all z € R? and then by uniqueness of the solution we must have &g ()= E;4(x) a.s
and the statement is proved. O

Theorem 8. Forallp>2, 0<s<t<T, 0<s'<t/<T,z,z’€RY :

Elése(x) — (@) P < C{lz —a'lP+ (L || + |2/|)P(1t = 1P/ 4 |s — '[P/%)}

Proof. For simplicity we consider only the case 0 < s < s’ <t <t'<T, the others can be obtained via
similar reasoning. Using the SDE and Corollary 7 we have

m t
fs/t/(:g’):x’—i—Z/Vk(r,fs/T dBk+Z/ r, Eur(z')) dBE
k=0 /s’

@) =€) + > [ Vulr o(€unla) dBE
k=0 7%
So

€)= Evpla)P < (2m+3)P- {\fss (z) - 2P

A
m t p
3 | [l 6 a) Vi (G N B
k=0 ~
m t D
+Z / Vk(?“, gs’r(wl)) dBﬁ
k=0 Jt .

where we used the inequality: |Zi\;1 a;|[P< NP *125\;1 |a;|P, which follows from Jensens’ inequality. We
are going to estimate each of the terms A, B, C separately.

Let us start by an auxiliary result:

El¢sw(x) —z|P <(m+3)P71> B /SVk(hisr(m))dBf ’

k=0
s/ ) p/2
<CpME / (14 |&sr(x)|)2dr (by BDG and the ass. on V%)
S
gcp(s’ — S)p/2(1 + |z|P) (by Jensen and Lemma 6)

With this estimation we have easily that
E[A] <20~ Y|z — /[P + Eléo(@) — 2P} < Cyllz — /[P + (s — )P/ (1 + |z[?)]
Similar computations leads to
E[B] < Cpl|z — 2'|P+ (s’ — s)P/2(1 4 |z|?)], and E[C] < Cp(t — t")P/2(1 + |2'))?.

This is enough to conclude. O

Remark 9. If on the second bound of Lemma 6 we let ¢ — 0 we obtain, by monotone convergence,

E|&si(z) — fst(y)|2p < Cp,T|$ - y|2p



so if we take p <0 we can conclude that if x # y then for all ¢, s we have P(&s(x) # &se(y)) = 1. We
can also show (try) that P(inf (s 77 [&se() — Ese(y)| >0) =1.

Lemma 10. Let

(w,9) = L
80 Y) =T ) = Ean(y)]

then for any p> 2 there exists a constant C), such that
El|ns,(z, y) = nor,e(@’, y )P < Cpd |z —2'|P + |y — /[P + M (|t = '[P% + |5 — s'|P/?)]
with M =1+ [[P + |y [P+ [z'[P + |y/|P.

Proof. A simple computation shows that

Ins,t(x,y) — nsre(x’, y") [P < 2Pns oz, y)Pnsr o (2!, 4" )Pl st () — Eor,e ()P + |6, () — Esrer(y) 7).

The reader is invited to complete the proof after taking the expectation of this expression. O

Exercise 3. The previous lemma allows to prove that x — &, () is injective for all s <t almost surely.
This is left as an exercise to the reader.

Lemma 11. Let RY=R9U {400} be the one-point compactification of RE. Let & =x/|x|? and define

1 PN
nos(@) =4 THEr Y270
0 if #=0.

Then for any p> 0 there exists a constant C, such that

E[|75,4(£) = 0s,e(9) "] S Cyl|& =GP+ [t —t'[P/? + |s — s|P/7].

Proof. We note that if x,y are finite

[75,6(2) = 15,6 (G) [P < 15,1 (£)Pn5,6(9)P[€5,6() — Es,6(y) [P

which can be used to prove the inequality. When = 0o we have

Ef|75,6(9) 7] < Cp(L+ |y[) 7P < Cp[g[P

so the full inequality follows. O

This lemma allows to prove the onto property for  — &, «(x). Indeed by Kolmogorov theorem & ~—
1s,¢(Z) is continuous in a neighborhood of & =0. Therefore £, ; can be extended as a continuous map
from IR to itself for any s <t a.s. Fix one good realization w, the map Z: 2+ & (w)s,¢() is homeomorphic
to the identity map R~ %7 R~ $. By homotopy theory therefore = has to be surjective. Moreover
since E(c0) = 0o also the restriction to R is surjective. The map 2~ is continuous bijective since R*

is compact. Then we proven that = is an homeomorphism.



3 Differentiability of the stochastic flow

We say that a function defined over R? belongs to C’l’e(IRd) if it is differentiable and its derivative

is locally Holder of index . We denote C’;’G(Rd) C CHP(RY) the set of functions whose derivative is
globally #-Hélder.

Theorem 12. Let us assume that the vectorfields Vi belong to C;’H(Rd) uniformly in time and that the
derivatives are bounded. Then for all ' <6, x> £s(x) is almost surely of class Cl’gl(le) uniformly

in s,t and the derivative VEgi(x) satisfies the SDE

) m d t )

Vil (@) =05+ 3 3 / VIVi(r, Eurlw)) Vichi(x)dBY (6)
k=0 1=1 Y%

for all s,t,x a.s.

Proof. Let

o Elrty) — Ealy)
nst( ay) |y|

An application of Taylor’s formula gives

t 1
nst(z,y) —%"‘/ /0 drVVi(r, Esr(@) + 7y nse(z, y))nse(2, y) dBf-

Vsr(,y)

We want to show that 7(z, y) is a continuous function of s,¢,z,y for all y#0 and thus that the limit
y— 0 exists and that V&s¢(v) =lim,ons¢(x, pe;) is an Hélder function of x,s,t. All these properties
will follow from the following estimation

Elns(z, y) = nov(@’, v)P < Cp{le — &1°P + |y = ¢/|*P + (1 + [2|*P + [&/|*P)[|t — ¢|*"/% + |5 —
s'|°P/2]}. (7)

Let us prove eq. (7) step by step. First step, boundedness of ns¢(z,y) in LP:

Elnse(z, y)|P <Cp

z,u,k

t
1+ |t — [P/ Lsup [V Vi(u, 2)[? / E\nﬂ(x,ynpdu] (8)

by Gronwall we have E|ng(z,y)|”? <C, eI for all 0 <s<t<T. Consider now the case t =t and
s<s' <t

nat(, ) — mwre (s ') = / Vor (@, 9)7er(, ) d B,
. A
+ [ W)t ) = Vero@' e la ) B
B

Then

E[lA[< Cpls — 8’|p/21/ Elnsr(z, y)|Pdr < Cpls —s'|P/2.

s



The integrand of B is estimated by
Var(@, y) = Varr (@', y) [nse(, )| + Vsre (@', ) 050 (2, y) = mor0 (2, )|
SCIVV los|nsr(@, y) = nor (2’ y')]|
C(] &or(@) = Esrr(@)|* + [ &sr(z +y) = Eorn(@+ ¥ nsr (2, y)]-
We can then control E[|B|?] by
t
Cl(1+ |z]oP + [a'|°P)]s — &/| P/ + |2 — &/|*P + |y — /|°7] + C/ Elnsr(z,y) — ns (', y')|Pdr

8/

and applying Gronwall we deduce that

t
Elnsi(z,y) — nerp(a’, y)P <D+ C//Emr(x, y) — nerr(a’, y')[Pdr

s

where D := C'[(1 4 || + |2/|*P)|s — s'|*P/2 4+ |z — 2/|*P + |y — 3/'|°P]. This gives us eq. (7). We need
now to control the case t <t (all the others can be dealt with similarly). We have

t/
Nse(@,y) — nsrer(@', y') = sz, y) — nere(a’, y') +/ Verr(2', y') nsr(2', y') dBy
t

and thanks for the bound (8) the stochastic integral can be bounded in L? by C|t — ¢/|'/? and we
conclude easily. O

Remark 13. If we assume that V, € C;’G then, by similar methods, we can obtain & € ™Y for all
0<0 <6.

Theorem 14. Almost surely, the Jacobian matriz V&si(x) is not singular for all s,t,x.

Proof. By Theorem 12 the matrix V¢ satisfies the integral equation (6). We consider then the following
equation for the process t — Kg¢(x) with values in d x d matrices:

dt Kst(l‘) = — St(SU) VVk(fst(SU)) dBtk — Kst(SU)VVk (fst(l‘)) VVk(fst(SU)) dt, t > S,

with initial condition Kss(z) =Ijxq. It is easy to see that this equation has a unique solution which
is global in time and continuous in s,t,x if V € C’;’a. It6 formula gives

de| Kst(2) V&sit(2)] =[di Kst(2)]V &) + Kst(2) [deV Ese()] + di (K. (), VEs.(2)) =0

and then K (2)V&si(r) = Kss(2)VE&ss(x) = Igxq for all t > s and x. This shows that the matrix
Vési(z) is not singular and that [V&g ()] 71 = Kg(). O

4 Backward Stochastic integrals

We already seen that the flow £ driven by B and Vj satisfies the It6 formula
t
Fléale) =F () + Z [P entan i+ [ L@ F(entaar

10



where

d m
V) F(2) =Y v,g(r,x)agg), LOF@ =33 Vilr, o)V x)aaf 8(%)

i=1 i,j=1 k=1

Note that the coefficients of the vectorfields are computed along the flow and that the variable s is
kept fixed while the variable ¢ is subject of the stochastic calculus.

We are going now to obtain another representation of F(&s¢(x)) as a backward semimartingale in the
variable s, keeping t fixed.

Theorem 15. If Vi, € C>*(R% RY) and F € C*(R%R) then

Féals Z / Vi(r) (F o &) (2)ABE + /L(r)(Fosﬁxx)dr

Proof. We fix a partition A={0=s9<s$1 < <sp,=t} of [0,¢] and we assume that s= s, for some
0<f<n. Then

I
—

n

F(&si(x)) = F(x) =) [(Fo & 6)(Espsnia(®)) = (Fro &y yy ) (@)]- (9)

Eond
Il
~

A Taylor expansion gives the this quantity is equal to

]
)

B

VilF o &g )(2) [€hy sy (2) — 2]

T

£ i=1

+Z Z Vi(F o &)@+ k) [Ehy ss (@) —mil[€, o, () — 3]

=0 i,j=1

where 7, are r.v. on R? such that 7| <| &, s, (2) — 2. We will show the following convergences

1

n— d m t " s
'AA: Z vi(Fo §3k+1t)(x) [féksk+1(x) _xi] _>Z / VJ(T)(FO grt)(l')de
k=¢ i=1 j=0"?%
n—1 d t
=3 3 VH(FO €i)@) (60— allE (@)= = [ LO)Fo &)
k=t i j—1 s

and moreover

n—1 d
A =S ST [VE(Fo by )@+ 1) = VE(F 0 €y, )(@) [Ehy oy (2) — €D, () — 2] = 0
k=0 i,7=1

when the size |A| of the partition A goes to zero. This is enough to prove eq. (9).
We have

AA:Z Z vi(FO§5k+1t)(x) /SIH_I ( fskr 1{:2 Z Az

k j=0 i=1



For 7€ [0,t] and j >1 let I® the process

1P = E[AB| 7,

which is a continuous and square integrable backward martingale. Let now M2 the continuous and
square integrable backward martingale defined by

M~ ::E[.,ZliAj‘}-rt]

where

n—1
A= Vi(Fo &y, )@ Vi(r,2)(B,, - BJ)
k=0

A direct computation shows that the quadratic variation of I — M* along the partition A is given by

Sk+1

A AA:nil A i _ ! J ?
(I8 = MA)P =" [Vi(Fo&y, ()| [Vi(r, &spr()) = Vi(r,x)] d B
k=0 s

k

which is going to zero in L' when |A] —0. So I~ — MA converges to zero uniformly in L?. But now
MP? — M, where

t . N
MT::/ Vi(Fo&)(x) Vj’(r,x)dBﬂ.

It is easy to show the convergence of the terms with 5 =0.

Let
A - 2 TR v
J=E ) vij(Fogth)(x)/ Vi(r, &g r(2)) d BY | Frt
k=t Sk
and
A n—log
K>'=E Z/ VI (r, €sr(2)) A BY | Frt
k=t 7 5k

then B2 = S0 [(JA7, KANA — (JAvY KAY)A] Again, it is easy to show that J2Y and K2
converge to J; and K/ respectively, where

t . A~
J;f:_/ Vii(Fo &) (z) Vi(r,z)d BY
t . R
K}f::/ VI (r,z)d By.

We are going to show that (J2v, K&v)& - (J¥, Kv), giving the convergence we are looking after. We
have

[TV AR — (0 K)o S [(JA KA)E = (T KP4 | (J°, K)E = (17, KV
and it is clear that the second term is going to 0. For the first we use that

| <JA,U’KA,U>tA_ <JU’KU>tA‘ < (<JA,1} _ Jv>tA<KA,U>tA)1/2+ (<KA,U _KU>tA<JA,U>tA)1/2.

12



If we now observe that |JtA’” — JP|2 = (JA? — J¥)2 is a continuous martingale, we have

Esup (JA — JOR KITE[JSY — JP 2 —0.
t

Moreover

c4 <St;p IVZ(F 0 Lo )@+ mi) = Vii(F o Lo ) (@) (K@) KA(1) /2 =0
and we are done. O
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