

Stochastic Analysis Problem Sheet 9.

Tutorial classes: Mon July 11th in SemR 0.008. Philipp Boos <s6phboos@uni-bonn.de>. Solutions will be collected at the beginning of the tutorial session. At most in groups of 3.

Exercise 1. Let $(B_t)_{t \in [0,1]}$ be a standard Brownian motion. Note that if $\lambda < 1/2$ we have

$$
\mathbb{E}\!\int_{[0,1]^2}\!\mathrm{d} t\,\mathrm{d} s e^{\lambda\frac{|B_t-Bs|^2}{|t-s|}}\!<\!+\infty.
$$

Use this observation and the Garsia–Rodemich–Rumsey inequality with $\Psi(x) = e^{\lambda x^2} - 1$ to derive an almost sure modulus of continuity for Brownian motion.

Exercise 2. Prove (the upper bound of) Burkholder-Davis-Gundy inequality. Let M be a continuous local martingale (with $M_0 = 0$). For any $p \ge 2$ we have

$$
\mathbb{E}[\sup_{t \leq T} |M_t|^p] \leqslant C_p \mathbb{E}\big[\left([M]_T^{p/2} \right) \big]
$$

where C_p is a universal constant depending only on p .

a) Assume that the martingale *M* is bounded. Use Itô formula on $t \mapsto (\varepsilon + |M_t|^2)^{p/2}$ to prove that

$$
\mathbb{E}[\sup_{t\leq T}|M_t|^p]\leqslant \int_0^T \mathbb{E}[|M_t|^{p-2}\mathrm{d}[M]_t].
$$

(why we need $\varepsilon > 0$?)

- b) Use Hölder's and Doob's inequality to conclude.
- c) Remove the assumption of boundedness.

Exercise 3. Let us continue with the setting of Exercise 1 and prove now a complementary lower bound when $p \geqslant 4$, that is

$$
\mathbb{E}\big[\left([M]_T^{p/2} \right) \big] \leqslant C_p \mathbb{E}[\sup_{t \leqslant T} |M_t|^p].
$$

where again C_p is a universal constant depending only on p (not the same as that of the upper bound).

a) Use the relation

$$
[M]_T\!=\!M_T^2-2\!\int_0^T\!\!M_s\text{d}M_s
$$

to estimate $\mathbb{E}[(M]_T^{p/2})]$ and then use the BDG upper bound for the stochastic integral.

b) Prove that if we let $N_T = \int_0^T M_s dM_s$ then for any $\varepsilon > 0$ there exists $\lambda_{\varepsilon} > 0$ such that

$$
[N]_T^{1/2} \le \lambda_{\varepsilon} \sup_{t \le T} |M_t| + \varepsilon [M]_T
$$

c) Conclude by choosing ε small enough.

Exercise 4. Prove a substitution lemma for stochastic integrals. Let us be given a standard basis $(\Omega, \mathcal{F}, \mathcal{F}_{\bullet}, \mathbb{P})$ and let *Y* be an \mathcal{F}_0 measurable r.v. with values in \mathbb{R}^d and $f: \Omega \times \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}$ a stochastic process such that for any $x \in \mathbb{R}^d$ the process $s \mapsto f_s(x)$ is predictable, $\int_0^T |f_s(x)|$ $\int_0^T |f_s(x)|^2 d[M]_s < \infty$ a.s. and $(s, x) \mapsto f_s(x)$ is continuous. Let *M* be a continuous local martingale. Then

$$
\left[\left.\int_0^T f_s(x) \mathrm{d}M_s\right]\right|_{x=Y} = \int_0^T f_s(Y) \mathrm{d}M_s.
$$

- a) Consider a partition Δ of $[0, T]$ and let $f^{\Delta}(x)$ be piecewise linear approximations to $f(x)$. Prove that for any compact $K \subset \mathbb{R}^d$, $\int_0^T \sup_{x \in \mathbb{R}^d}$ $T_0^T \sup_{x \in K} |f_s(x) - f_s^{\Delta}(x)|^2 d[M]_s \to 0$ a.s. as the size of the partition $|\Delta| \rightarrow 0$.
- b) Deduce that there exists a sequence of partitions $(\Delta_n)_{n\geq 1}$ such that $|\Delta_n| \to 0$ and that, letting $J^n(x) := \int_0^T f_s^{\Delta_n}(x) dM_s$ and $J(x) := \int_0^T f_s(x) dM_s$ we have for any compact *K*

$$
\sup_{x \in K} |J^n(x) - J(x)| \to 0 \quad \text{a.s.}
$$

c) Prove that the substitution formula is true for f^{Δ} and conclude.

Exercise 5. **(Bonus)** Prove a Fubini theorem for stochastic integrals. Let (Λ, \mathcal{A}) be a measure space and $(\Omega, \mathcal{F}, \mathcal{F}_{\bullet}, \mathbb{P})$ a filtered probability space.

a) Let $(X_n)_n$ a sequence of functions $X_n: \Omega \times \Lambda \to \mathbb{R}$ which are $\mathcal{F} \otimes \mathcal{A}$ measurable (product σ -field) and such that $(X_n(\cdot, \lambda))_n$ converges in probability for any fixed $\lambda \in \Lambda$. Prove that there exists an $\mathcal{F} \otimes \mathcal{A}$ measurable function $X : \Omega \times \Lambda \to \mathbb{R}$ for which $X_n(\cdot, \lambda) \longrightarrow X(\cdot, \lambda)$ for any $\lambda \in \Lambda$. [Hint: here the difficulty is the measurability of the limit X, consider the sequence $n_k(\lambda)$ defined by $n_0(\lambda) = 1$ and

$$
n_{k+1}(\lambda) = \inf \left\{ m > n_k(\lambda) \colon \sup_{p,q \geqslant m} \mathbb{P}[|X_p(\cdot,\lambda) - X_q(\cdot,\lambda)| > 2^{-k}] \leqslant 2^{-k} \right\}
$$

and prove that $\lim_k X_{n_k(\lambda)}(\cdot, \lambda)$ exists a.s. and conclude

b) Let $H: \Lambda \times \mathbb{R}_{\geqslant 0} \times \Omega \to R$ be a bounded function which is measurable w.r.t. $A \otimes P$ where P is the predictable σ -field on $\mathbb{R}_{\geqslant 0} \times \Omega$. Let *M* be a continuous martingale on $(\Omega, \mathcal{F}, \mathcal{F}_{\bullet}, \mathbb{P})$. Prove that there exists a function $J: \Lambda \times \Omega \to \mathbb{R}$ measurable for $\mathcal{A} \otimes \mathcal{F}_T$ which is a version of the stochastic process $\lambda \mapsto J(\lambda) := \int_0^T H(\lambda, s) dM_s$ and for which it holds

$$
\int_{\Lambda} J(\lambda) m(\mathrm{d}\lambda) = \int_0^T \left[\int_{\Lambda} H(\lambda, s, \cdot) m(\mathrm{d}\lambda) \right] \mathrm{d}M_s, \quad a.s.
$$

for any bounded measure *m* on (Λ, \mathcal{A}) . Hint: prove that

$$
\mathbb{E}\bigg[\bigg(\int_0^T\bigg[\int_\Lambda H(\lambda,s,\cdot)\,m(\mathrm{d}\lambda)\bigg]\mathrm{d}M_s-\int_\Lambda J(\lambda)m(\mathrm{d}\lambda)\bigg)^2\bigg]=0.
$$