

Stochastic Analysis – Problem Sheet 2.

Tutorial classes: Mon May 15th 16–18 in SemR 1.007. Claudio Bellani <claudio.bellani01@gmail.com>. Solutions will be collected Tuesday May 9th during the lecture. At most in groups of 3.

Exercise 1. (Constant quadratic variation) Let M be a continuous local martingale and $S \le T$ two stopping times. Prove that $[M]_T = [M]_S < \infty$ a.s implies $M_t = M_S$ for all $t \in [S, T]$ a.s. . [Hint: consider the continuous local martingale $N_t = \int_0^t \mathbb{I}_{[S,T]}(s) dM_s$].

Exercise 2. (Feynman-Kac formula for Ito diffusions)

a) Consider the solution X of the SDE in \mathbb{R}^n

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, \quad X_0 = x,$$

where B is a d-dimensional Brownian motion and $b: \mathbb{R}^n \to \mathbb{R}^n$, $\sigma: \mathbb{R}^n \to \mathbb{R}^{n \times d}$ locally bounded continuous coefficients. Let \mathscr{L} be the associated infinitesimal generator. Fix t > 0 and assume that $\varphi: \mathbb{R}^n \to \mathbb{R}$ and $V: [0, t] \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ are continuous functions. Show that any bounded $C^{1,2}$ solution $u: [0, t] \times \mathbb{R}^n \to \mathbb{R}$ of the equation

$$\frac{\partial}{\partial s}u(s,x) = \mathcal{L}u(s,x) - V(s,x)u(s,x), \quad (s,x) \in (0,t] \times \mathbb{R}^n, u(0,x) = \varphi(x),$$

has the stochastic representation

$$u(t,x) = \mathbb{E}\left[\varphi(X_t)\exp\left(-\int_0^t V(t-s,X_s)ds\right)\right].$$

In particular, there is at most only one solution of the PDE.

[Hint: show that $M_r = \exp(-\int_0^t V(t-s, X_s) ds) u(t-r, X_r)$ is a local martingale].

b) The price of a security is modeled by a geometric Brownian motion X with parameters $\alpha, \sigma > 0$:

$$dX_t = \alpha X_t dt + \sigma X_t dB_t, \qquad X_0 = x > 0.$$

At price y we have a running cost of V(y) per unit time. The total cost up to time t is then

$$A_t = \int_0^t V(X_s) \mathrm{d}s.$$

Suppose that u is a bounded solution to the PDE

$$\frac{\partial}{\partial s}u(s,x) = \mathcal{L}u(s,x) - \beta V(s,x)u(s,x), \quad (s,x) \in (0,t] \times \mathbb{R}_{\geq 0},$$

$$u(0,x) = 1,$$

where \mathcal{L} is the generator of X. Show that the Laplace transform of A_t is given by

$$\mathbb{E}[e^{-\beta A_t}] = u(t, x).$$

Exercise 3. (Continuous Branching Process) Consider a family of diffusions $(X_t(x))_{t>0,x>0}$ satisfying the SDE

$$dX_t(x) = \alpha X_t(x) dt + \sqrt{\beta X_t(x)} dB_t, \quad X_0(x) = x,$$

where $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}_{>0}$. Existence of strong solutions to this equation follows from the Yamada–Watanabe theorem. Let (\tilde{X}, \tilde{B}) be an independent copy of (X, B) and let $Y_t(x, y) = X_t(x) + \tilde{X}_t(y)$ for t > 0, x > 0, y > 0.

- a) (Branching) Compute the SDE satisfied by Y and prove that $(Y(x, y))_{t \ge 0}$ has the same law of $(X_t(x+y))_{t \ge 0}$. [Hint: use martingale caracterization of weak solutions and pathwise uniqueness]
- b) (Duality) Show that this implies that there exists a function $u: \mathbb{R}_{\geq 0} \times \mathbb{R}_{>0} \to \mathbb{R}_{\geq 0}$ such that

$$\mathbb{E}[e^{-\lambda X_t(x)}] = e^{-xu(t,\lambda)}, \qquad x \in \mathbb{R}_{>0}$$
 (1)

if we assume that the map $x \mapsto \mathbb{E}[e^{-\lambda X_l(x)}]$ is continuous.

- c) Assume that $u: \mathbb{R}_{>0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is differentiable with respect to its first parameter. Apply Ito formula to $s \mapsto G_s = e^{-u(t-s,\lambda)X_s(x)}$ and determine which differential equation u should satisfy in order for G to be a local martingale. Prove that in this case eq.(1) is satisfied (in particular, if a solution of the equation exists then it is unique).
- d) (Extinction probability) Find the explicit solution u for the differential equation and using eq. (1) prove that if $\alpha = 0$ then

$$\mathbb{P}(X_t(x)=0) = e^{-2x/(\beta t)}, \quad x, t > 0.$$