

Stochastic Analysis – Problem Sheet 7.

Tutorial classes: Mon July 3rd 16–18 in SemR 1.007. Claudio Bellani <claudio.bellani01@gmail.com>. Solutions will be collected Tuesday June 27th during the lecture. At most in groups of 3.

Let $(\Omega := C(\mathbb{R}_{\geq 0}; \mathbb{R}), \mathcal{F}, \mathcal{F}_{\bullet}, \mathbb{P})$ the one dimensional Wiener space and X the canonical process.

Exercise 1. Find a predictable process F such that

$$\Phi = \mathbb{E}[\Phi] + \int_0^\infty F_s \mathrm{d}X_s$$

when $\Phi \in L^2(\Omega, \mathcal{F}_T, \mathbb{P})$ is each of the following r.v. (with T > 0 fixed)

$$X_T^2, e^{X_T}, \int_0^T X_t dt, X_T^3, \sin(X_T).$$

Exercise 2. We want to prove that the linear span of r.v. of the form

$$E(h) = \cos\left(\int h_s \mathrm{d}X_s\right) \exp\left(\frac{1}{2} \int h_s^2 \mathrm{d}s\right), \quad F(h) = \sin\left(\int h_s \mathrm{d}X_s\right) \exp\left(\frac{1}{2} \int h_s^2 \mathrm{d}s\right), \qquad h \in L^2(\mathbb{R}_{\ge 0}),$$

is dense in $L^2(\Omega, \mathcal{F}, \mathbb{P})$ (*h* is a deterministic function and the integrals are over $\mathbb{R}_{\geq 0}$).

a) Show that if $G \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ is orthogonal to all $\{E(h), F(h): h \in L^2(\mathbb{R})\}$, then in particular

$$\mathbb{E}[G\exp(i\lambda_1B_{t_1}+\cdots+i\lambda_nB_{t_n})]=0$$

for all $\lambda_1, ..., \lambda_n \in \mathbb{R}$ and $t_1, ..., t_n \ge 0$.

- b) Deduce from this that G is orthogonal to all functions of the from $\phi(B_{t_1}, ..., B_{t_n})$ with $\phi \in C_0^{\infty}$. [Hint: use Fourier transform]
- c) Conclude.

Exercise 3. Use the class of functions introduced in Exercise 2 to reprove the Brownian martingale representation theorem.

a) Determine the martingale representation for functions Φ of the from

$$\Phi = \sum_{i} (a_i E(h_i) + b_i F(h_i))$$

where $a_i, b_i \in \mathbb{R}, h_i \in L^2(\mathbb{R}_{\geq 0})$ and the sum is finite.

b) Use the density of such functions to approximate an arbitrary element $\Phi \in L^2$ and conclude.