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SDE techniques: Doob's transform
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Let (Xt,Bt)t⩾0 be the solution of an SDE with Markovian drift b:ℝ+ ×ℝn →ℝn and diffusion coefficient 𝜎:
ℝ+ ×ℝn →ℒ(ℝm,ℝn) where B is the Brownian motion driving the SDE.
Let h∈C1,2(ℝ+ ×ℝn;ℝ>0) be a stricly positive function such that

(∂t +ℒ)h(t, x)=0,

for all t ∈[0, t∗] and x ∈ℝn where ℒ is the generator of the SDE, i.e. ℒ=b ⋅∇+ 1
2Tr[𝜎𝜎T∇2]�.

By Ito formula the process Zt ≔h(t, Xt) is a positive local martingale. Let us assume that (Zt)t∈[0,t∗] is a
(true) martingale and that Z0 = h(0, X0) = 1 (this can be always arranged by normalizing h). Then we can
use the process (Zt)t to define a new measure

dℚ≔Zt∗dℙ.

(If needed we can extend Zt =Zt∗ if t > t∗). Note that by construction the process Z is continuous and Z0=1.
By using Girsanov's theorem we know that the process

B̃=B− [B,L]

is a ℚ-Brownian motion where L is the only local martingale such that Z = ℰ(L). Since dZt = ZtdLt we
have that

dZt =𝜎(t,Xt)T∇h(t,Xt) ⋅dBt, dLt =Zt
−1dZt =

𝜎T(t,Xt)∇h(t,Xt)
h(t,Xt)

⋅ dBt =𝜎T(t,Xt)∇logh(t,Xt) ⋅ dBt

for t ⩽ t∗ and dZt =0 if t > t∗. Therefore

dB̃t =dBt −𝜎T(t,Xt)∇logh(t,Xt)dt, t ∈[0, t∗],

and dB̃t =dBt if t > t∗. As consequence the process X solves now a new SDE (under ℚ)
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b̃(t,Xt)dt

dt +𝜎(t,Xt)dB̃t, t ∈[0, t∗]

with the same diffusion coeffient 𝜎 but a new drift

b̃(t,x)=b(t, x)+1t∈[0,t∗](𝜎𝜎T∇logh)(t,x), t ⩾0,x ∈ℝn.

This construction is called Doob's h-transform.

Exercise 1. Try to perform the same construction for a martingale problem, i.e. not relying on the process B but only on X. I.e.
starting from a measure ℙ on the canonical path space C(ℝ+;ℝn) solving the martingale problem for ℒ construct a new measure
ℚ which solves a new martingale problem with a modified drift as above.

Example 1. Take h(t,x)=exp�𝛾⋅x− 1
2 |𝛾|2� where 𝛾∈ℝn and t⩾0. Then the Doob's h-transformed process

of a Brownian motion with this funciton gives a Brownian motion with drift.

If (Zt)t is only a martingale in an open interval I = [0, t∗) with possibly t∗ = +∞. Then we can still define
ℚ on ℱt to be given by dℚ|ℱt ≔ Ztdℙ|ℱt and check that this gives a well-defined probability measure on
ℱ∞ =∨t⩾0ℱt. In this case is natural to restict all the measures to ℱ∞ i.e. to require ℱ∞ =ℱ.
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Remark 2. We do not need to require that h is positive everywhere (actually this will not be the case in the
applications). What we need is that the process Zt = h(t, Xt) is a local martingale, i.e. (∂t + ℒ)h(t, Xt) =0
a.s. and for almost every t⩾0 and that Zt >0 almost surely. If h is not stricly positive we can always define
the stopping time T =inf {t ⩾0:Zt =0}, then the stopped process (Zt

T)t⩾0 is a positive local martingale and
some condition is needed to ensure that it is a martingale. Remember that we require that Z0 = 1 and by
construction (Zt)t⩾0 is continuous. In this setting one can perform the Doob's transform up to the random
stopping time T . Note that under the measure ℚ we always have T =+∞ almost surely.

1 Diffusion bridges
We use now Doob's transform to describe the regular conditional law of a Markovian diffusion (Xt)t⩾0
conditioned on the event that XT =y with T >0 and deterministic, and y∈ℝn. I will assume also that X0=x0.
We need to assume that the process (Xt)t⩾0 is a Markov process with transition density given by

ℙ(Xt ∈dx′|Xs =x)= p(s,x; t,x′)dx′, s< t ∈[0,T], x,x′∈ℝn,

for some measurable and positive function p. Note that we cannot take s= t here. Recall that ℙ(Xt ∈dy|Xs=
x) means the regular conditional probability kernel for the conditional law of Xt given Xs.
Define now the function

hy(s,x)≔ p(s, x;T , y)
p(0,x0;T ,y) , s∈[0,T),x ∈ℝn.

Let Zt
y ≔hy(t,Xt), this is non-negative process, and it is also a martingale, indeed by the Markov property

of X

𝔼[Zt
y|ℱs]=𝔼[hy(t,Xt)|ℱs]=𝔼[hy(t,Xt)|Xs]=�

ℝn
hy(t, x′)p(s,Xs; t,x′)dx′

= 1
p(0,x0;T , y)�

ℝn
p(s,Xs; t,x′)p(t, x′;T , y)dx′= p(s,Xs;T ,y)

p(0, x0;T , y) =Zs
y

by Chapman–Kolmogorov equations (the consistency condition for the transition density of a Markov
process).
We want to define a probability kernel (ℚy)y∈ℝn on (Ω, ℱ) such that they are the regular conditional
probabiliy of ℙ given XT , that is they have to satisfy

ℙ(A)=𝔼[ℙ(A|XT)]=𝔼[ℚXT(A)]=�
ℝn

ℚy(A)ℙ(XT ∈dy)=�
ℝn

ℚy(A)p(0,x0;T , y)dy

for all A∈ℱ. Take A∈ℱs for some s<T , by Markov property we have for any bounded measurable g,

𝔼[1A g(XT)]=𝔼[1A 𝔼[g(XT)|ℱs]]=𝔼[1A 𝔼[g(XT)|Xs]]=𝔼�1A �
ℝn

g(y)p(s,Xs;T ,y)dy�

=�
ℝn

g(y)𝔼[1A p(s,Xs;T , y)]dy

since

𝔼[g(XT)|Xs]=�
ℝn

g(y)p(s,Xs;T ,y)dy.

This means that we have ℙ(A|XT)=q(XT) and we can take

q(y)≔𝔼�1A
p(s,Xs;T , y)
p(0,x0;T ,y)�,

since we have proven that

𝔼[q(XT)g(XT)]=𝔼[1A g(XT)]=�
ℝn

g(y)q(y) p(0, x0;T , y)dy.
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As a consequence we can take

ℚy(A)≔𝔼�1A
p(s,Xs;T ,y)
p(0, x0;T , y)�, A∈ℱs

and have that y↦ℚy indentify a well-defined probability kernel on ℱT − since for any A∈ℱT − the function
y↦ℚy(A) is measurable in y and for any y, ℚy is a probability in A.

Remark 3. Is it possible with some care to extend ℚy to the full ℱ, but we refrain to do so here.

We have now the formula

ℙ(A|XT)=ℚXT(A), A∈ℱT −.

I want now to describe better the measure ℚy (at least up to time T ), we observe that ℚy is obtained as the
Doob's h-transform of ℙ in the interval [0,T) with h=hy function

hy(s,x)≔ p(s, x;T , y)
p(0,x0;T ,y) , s∈[0,T),x ∈ℝn.

As a consequence we can show that the process X under ℚy satisfies an SDE provided I can apply Ito
formula to hy, that is I have to require that (s, x) ↦ p(s, x; T , y) is C1,2([0, T) × ℝn). Given that Doob's
transform give that X under ℚy solves the new SDE (or an equivalent martingale problem)

dXt =b(t,Xt)dt +𝜎𝜎T∇loghy(t,Xt)dt +𝜎(t,Xt)dBt, t ∈[0,T).

Is easy to see from specific examples that the function 𝜎𝜎T∇loghy(t, x) is singular when t ↗T .

Exercise 2. Compute the SDE satisfied by a n-dimensional Brownian motion when we condition it to reach the point y at time
T >0.

Observe that under ℚy we have that

ℚy�lim
t↑T

Xt = z�=1z=y.

for any y, z ∈ℝn. Observe also that

ℙ�lim
t↑T

Xt =y�=ℙ(XT =y)=0

since XT has density p(0, x0;T , ⋅). So the measures ℚy are all singular wrt. ℙ.

Next week: more complex conditionings, e.g. diffusion condioned never to leave a given region.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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