

SDE techniques: Doob's transform/Conditioning

Last lecture: we described the law of a diffusion $(X_t)_{t\geq 0}$ conditioned to reach a point y at a time T.

More precisely, take \mathbb{P} to be the law of a diffusion $(X_t)_{t\geq 0}$. The goal was to identify the probability kernel $y \in \mathbb{R}^n \mapsto \mathbb{P}^y \in \Pi(\mathscr{C}^n)$ such that we can disintegrate \mathbb{P} as

$$\mathbb{P}(A) = \int_{\mathbb{R}^n} \mathbb{P}^y(A) \mathbb{P}(X_T \in dy) = \mathbb{E}[\mathbb{P}^{X_T}(A)], \qquad A \in \mathcal{F},$$
(1)

where $\mathbb{P}(X_T \in dy)$ represent the law of X_T under \mathbb{P} . We define the law of X conditioned to reach a point y at a time T as the law of X under \mathbb{P}^y . Being the event $\{X_T = y\}$ of zero probability for \mathbb{P} in general, this is a reasonable way to define this event. We see indeed that $\mathbb{P}^{X_T}(A) = \mathbb{E}[\mathbb{1}_A | X_T]$.

We had to assume that the process $(X_t)_{t\geq 0}$ is Markov wrt. the given filtration $(\mathcal{F}_t)_{t\geq 0}$ and that it has a transition probability given by the density p(s,x;s',x') so that

$$\mathbb{P}(X_{s'} \in \mathrm{d}x' | X_s = x) = p(s, x; s', x') \mathrm{d}x', \qquad s < s', x, x' \in \mathbb{R}^n.$$

We can the introduce the *martingale* $Z_t^y = h^y(t, X_t)$ $t \in [0, T)$, given by

$$h^{y}(t,x) = \frac{p(t,x;T,y)}{p(0,x_{0};T,y)}, \quad t \in [0,T),$$

where we assume that $X_0 = x_0 \in \mathbb{R}^n$ and that p(t, x; T, y) > 0 for all x and $t \in [0, T)$. (this can be obtained by first conditioning on X_0 and then performing the construction). Usually p(t, x; T, y) is not well defined when $t \to T$. E.g. in the case of Brownian motion one has

$$p(t, x; T, y) = (2\pi (T - t))^{-d/2} \exp\left(-\frac{|x - y|^2}{2(T - t)}\right).$$

Then one use this to construct the Doob's transformed measure \mathbb{P}^y on \mathscr{F}_{T-} by letting

$$d\mathbb{P}^y|_{\mathscr{F}_t} = Z_t^y d\mathbb{P}|_{\mathscr{F}_t}, \quad t \in [0, T).$$

And one can check that this definition satisfy (1) for $A \in \mathcal{F}_{T-}$. Now if $A_2 \in \sigma(X_t: t \ge T)$ we have

$$\mathbb{P}(A_2) = \mathbb{E}[\mathbb{E}[\mathbb{1}_{A_2}|\mathcal{F}_T]] = \mathbb{E}[\mathbb{E}[\mathbb{1}_{A_2}|X_T]] = \mathbb{E}[\varphi^{A_2}(X_T)]$$

with $\varphi^A(x) = \mathbb{E}[\mathbb{1}_A | X_T = x]$. So now consider also an event $A_1 \in \sigma(X_t : t < T)$. In this case we have

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{E}\left[\mathbb{1}_{A_1} \mathbb{E}\left[\mathbb{1}_{A_2} | \mathscr{F}_T\right]\right] = \mathbb{E}\left[\mathbb{1}_{A_1} \varphi^{A_2}(X_T)\right] = \int_{\mathbb{R}^n} \mathbb{P}^y(A_1) \varphi^{A_2}(y) \, \mathbb{P}\left(X_T \in dy\right).$$

Let assume that we have proven that

$$\mathbb{P}^{y}\left(\lim_{t\uparrow T}X_{t}=x\right)=\mathbb{1}_{x=y}, \qquad x\in\mathbb{R}^{n},$$

then we can write

$$\mathbb{P}(A_1\cap A_2) = \int_{\mathbb{R}^n} \underbrace{\mathbb{E}^y[\mathbbm{1}_{A_1}\varphi^{A_2}(X_T)]}_{\mathbb{P}^y(A_1\cap A_2)} \mathbb{P}(X_T\in \mathrm{d}y).$$

So this shows us that we can define

$$\mathbb{P}^{y}(A_{1} \cap A_{2}) = \mathbb{E}^{y}[\mathbb{1}_{A_{1}} \varphi^{A_{2}}(X_{T})] = \mathbb{E}^{y}[\mathbb{1}_{A_{1}}] \varphi^{A_{2}}(y).$$

This defines \mathbb{P}^y in $\sigma(X_t: t < T) \lor \sigma(X_t: t \ge T) = \sigma(X_t: t \ge 0)$. So \mathbb{P}^y can be used to define the conditional law of X.

One can then show that if the process *X* satisfies the SDE

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, \quad t \ge 0$$

then under \mathbb{P}^y the process X satisfies the SDE (provided $h^y(t,x)$ is $C^{1,2}$ for any t < T)

$$dX_t = [b(t, X_t) + (\sigma \sigma^T \nabla \log h^y)(t, X_t)]dt + \sigma(X_t)dB_t, \qquad t < T$$

and

$$dX_t = b(t, X_t)dt + \sigma(X_t)dB_t, \quad t \geqslant T.$$

Recall that under \mathbb{P}^y we have $X_{T-} = X_T = y$.

Remark 1. This approach can be exteded to condition a diffusion to reach a sequence of states $y_1, ..., y_n$ at given times $T_1 < \cdots < T_n$.

1 Condition a diffusion to not leave a domain

Consider the following situation: we want to condition a one dimensional Brownian motion $(B_t)_{t\geqslant 0}$ to stay positive for all times $t\geqslant 0$. This event has probability zero (since eventually BM will visit zero and by strong Markov property will have 1/2 probability to go negative + Borel-Cantelli). So the idea is to use less singular conditioning to arrive to describe this event.

Assume $B_0 = x_0 > 0$. In this case the convenient thing to do is to fix $R > x_0$ and ask consider the stopping time

$$T_R := \inf\{t \geqslant 0: B_t \notin [0, R]\}$$

and the event $E_R := \{B_{T_R} = R\}$. Now we know that $\mathbb{P}(E_R) = x_0 / R \in (0, 1)$. We can then define the conditional probability

$$\mathbb{P}^{R}(A) \coloneqq \frac{\mathbb{P}(A \cap E_{R})}{\mathbb{P}(E_{R})}$$

and now we would like to send $R \rightarrow \infty$ and study the limit.

Let $T_x = \inf\{t \ge 0: B_t = x\}$. We want to say that

$$\{T_0 = +\infty\} = \bigcap_{R>0} \{B_{T_R} = R\}$$

note that $(E_R)_R$ is a descreasing sequence of events.

I want to describe \mathbb{P}^R . Let $A \in \mathcal{F}_s$, observe that

$$\begin{split} \mathbb{P}^{R}(A) &= \frac{\mathbb{P}(A \cap E_{R})}{\mathbb{P}(E_{R})} = \frac{\mathbb{E}\left[\mathbb{1}_{A} \mathbb{E}\left[\mathbb{1}_{E_{R}} | \mathscr{F}_{s}\right]\right]}{\mathbb{P}(E_{R})} = \frac{\mathbb{E}\left[\mathbb{1}_{A} \mathbb{E}\left[\mathbb{1}_{T_{R} > s} \mathbb{1}_{E_{R}} | \mathscr{F}_{s}\right]\right] + \mathbb{E}\left[\mathbb{1}_{A} \mathbb{E}\left[\mathbb{1}_{T_{R} \leqslant s} \mathbb{1}_{E_{R}} | \mathscr{F}_{s}\right]\right]}{\mathbb{P}(E_{R})} \\ &= \frac{\mathbb{E}\left[\mathbb{1}_{A} \mathbb{1}_{T_{R} > s} \mathbb{P}_{X_{s}}(E_{R})\right] + \mathbb{E}\left[\mathbb{1}_{A} \mathbb{1}_{T_{R} \leqslant s} \mathbb{1}_{B_{T_{R}} = R}\right]}{\mathbb{P}(E_{R})} \end{split}$$

where $\mathbb{P}_x(E_R)$ is the probability of E_R for a BM starting at x at time 0. Note that $\mathbb{P}_0(E_R) = 0$ and $\mathbb{P}_R(E_R) = 1$ therefore setting

$$h(x) = \mathbb{P}_x(E_R) / \mathbb{P}_{x_0}(E_R) = x / x_0$$

we have that

$$\mathbb{P}^{R}(A) = \mathbb{E}[\mathbb{1}_{A}\mathbb{1}_{T_{R} > s}h(B_{s})] + \mathbb{E}[\mathbb{1}_{A}\mathbb{1}_{T_{R} \leq s}h(B_{T_{R}})] = \mathbb{E}[\mathbb{1}_{A}h(B_{s \wedge T_{R}})].$$

Remember that we did this for any $s \ge 0$ and $A \in \mathcal{F}_s$. So

$$d\mathbb{P}^R|_{\mathscr{F}_s} = h(B_{s \wedge T_R})d\mathbb{P}|_{\mathscr{F}_s}.$$

If we take $Z_t^R = h(B_{t \wedge T_R})$ then $(Z_t^R)_{t \ge 0}$ is a non-negative martingale (indeed $0 \le Z_t^R \le R$).

We have to pay attention to the fact that Z_t^R could touch zero and this happens at the stopping time T_0 . After time T_0 the process Z_t^R will stay in zero.

(Next lecture we continue)

Note that

$$Z_t^R = \mathcal{E}(L)_t, \qquad L_t = \int_0^t \mathbb{1}_{s \leqslant T_R}(\log h)'(B_s) dB_s.$$

By Girsanov's theorem we have that under the measure \mathbb{P}^R the process B satisfy the SDE

$$\mathrm{d}B_t = \frac{\mathbb{1}_{t \leqslant T_R}}{B_t} \mathrm{d}t + \mathrm{d}W_t, \qquad t \geqslant 0,$$

where W is a \mathbb{P}^{R} -Brownian motion.