V4F1 Stochastic Analysis — $52020 |||| |
Massimiliano Gubinelli UNIVER

Lecture 14 —2020.06.04 — 12:15 via Zoom

The student council is organising an event, where a former master student gives an informative talk about
her master thesis in the field of Analysis. She just finished her Master's, after having written her thesis
in Analysis with Prof. Disertori for one year. The talk will be held next Monday, 08.06. at 18:15. The
Zoom link can be found here:

https://fsmath.uni-bonn.de/veranstaltungen-detail/events/mastervorstellung-analysis.html

This talk is designed to give you an idea of what a master thesis can look like and how the process of
writing it works.

(from Fachschaft Mathematik)

niqueness in law via Girsanov's theorem
U 1 G 's th

Consider the SDE in R” with initial condition Xy=x,€ R"
dX,=b(t,X,)dt+dB;, t=20

where b: R, x R” - R” is a measurable time-dependent vector field. We are going to assume that
T
fo Ib(s, X,)[2ds < +00,  a.s. for all T >0. )

The goal is to show that under this condition all weak solutions of the SDE have the same law, in other
words we want to establish uniqueness in law.

We are going to use Girsanov's transformation to remove the drift by absorbing it into the Brownian motion
B.

Assume therefore to be given a weak solution (X, B). Define the increasing sequence of stopping times
t
Tpi= inf{t; 0: Io 1b(s, X,)[*ds > n}

By assumption we have that T, - oo a.s. when n— oo by (1). Then we can define a new measure Q"

n

dQ _ Tn 1t >
= _exp(—fo bis.X)dB,~5 [ |b(s,XS)|ds)

so that the process

Tt
B,=B,- [L,B],:B,+f0 b(s,X,)ds

is a Q" Brownian motion. In particular up to the random time 7, we have X; =1§,. So (Xi)iefo,7,] is a
Brownian motion (in the sense that the stopped process X ™" has the law of a Brownian motion stopped at a
stopping time).

Let now Ay € B(€"x €") such that {(X,B) € Ar} € F7 then

Tn 1t
EelLiae Lren] =Eo Livmen Lrerexp( [ b X0dB+ 5 [ b6, X)Pds )|

=EQ"[1<X,3)eAT1KneXP(fonb(S,X X 2,[ 2Cls)]
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Moreover note that B is an adapted function of X (by the SDE) so B= ®(X) where ¢: €" - €" is some
measurable and adapted functional (recall that "= C(R ,; R")). We write also 7, = 7,(X) to stress that it
is a given measurable function 7,: €" - R, U {400} of X. Therefore

Tn(X)

£ 1 ) )
Ep[lx.B)ea;lr<r,] = EQ"[ﬂ(x,<1>(X))eAT]1T<%,,(X)CXP(fo b(S,Xs)dXs—jfo 1D(s, X))l ds)]

Tn(X) 1 %X 2
~Eq| Livauen LresonBerlexp( [ b Xoaxo-5 [ b6, x0Pds )i 7 |

Ta(X)AT 1 ptn(X)AT 5
~Eo| Livaonne Lrenonexp( [ blsXodxe-g [ b X0 Pas) |

T 1 ¢T 5
=[,, Losonenreswesp( [ bls.ogdo 5 [ Ibs.0)Pds | W do).

where W is the law of a R” valued Brownian motion (i.e. the Wiener measure). So we proved that the
probability P((X,B) € Ar,T < ) can be expressed independently of the given weak solution and therefore
if (X!, BL,P') and (X2, B2, P?) are two weak solutions of the SDE then

P'(X',B") € Ar,T<T,(X") =P>*((X*,B*) € A7, T < T,(X?)) (2)
moreover if both these weak solutions satisfy the assumptions on the drift we have that

Pl(li;n%n(xl) - oo) - IP’Z(li;n%,,(XZ) - oo) -1
we can take the limit n — oo in (2) and conclude that for any 7 >0 and A7 given as above we have
Pl((X",B")eAr)=P*((X%, B> €Ar)
which implies uniqueness in law since we can also take T — oo to have that
PY(X',BYYeA)=P?((X%B% cA)

forany Ac B(E"x€").

So we proved that

Theorem 1. The SDE in R"
dX,=b(t,X,)dt+dB,, t=20

where b:R , x R" - R" is a measurable time-dependent vector field has uniquess in law in the class of weak
solutions which satisfy

T
fo b(s,X,)Pds < +c0,  a.s. forall T >0. 3)
In particular, if b is bounded then we have (unconditional) uniqueness in law for the SDE.
Exercise 1. Prove that under the same conditions the unique weak solution X is a Markov process.

Remark 2. The proof works also if b: R, x €” - R” such that (b(z, X;));>o is adapted to the filtration
generated by X. In this more general context the solution of the SDE it not a Markov process anymore.

Remark that from the proof we have the representation formula

T 1T 5
Ep[lxpearlr<s,] =L€” ﬂ(w,d)((u))eAT]lTs-E,,(w)eXp(IO b(s, ws)dws—§f0 b(s, wy)] ds)W(dw)



If we assume that the exponential term is integrable, then we can take by dominated convergence the limit
n — oo and obtain that

T 10T 5
P(X.B)€An = [, Luwwnenexp( [ bis.o)do—5 [ 1bGs.0)Pds | W (do).

In particular one has the explicit representation formula (path integral formula)

]P’(XeAT)—f ]la,eATexp(I (b(s, wy),dwy) n——f |b(s, a)J)IRuds)W(da)) 4)

forany Ay € o (w;:t€[0,T]) C B(€"). For example this would hold if Novikov's condition is satisfied

f% exp( f 1b(s, wg Izds)W(da))<oo

It could be tempting to try to use the formula (4) to simulate a diffusion, indeed by Monte-Carlo methods
one could take independent samples (B®)).cn of a Brownian motion and observe that by the law of large
numbers one has

10T
P(XeAr)= 11m NZ ]lB(k)eATexp(f (b(s, BG)),dBJV‘))Rn—EIO |b(s,B§k))|%{,,ds)

the appeal of this method would be that it is very easy to simulate an (approximate) Brownian motion (i.e.
via the Levy construction). Unfortunately is not easy to have a robust approximation of the stochastic
integral in the exponent: i.e. if one try to replace it by Riemann sums then the resulting object converge very
slowly to its “real value” and moreover it show very wild oscillations due to the fact that the exponential
function “amplifies” very large positive fluctuations of its argument (all these problems are “similar” or “of
the same nature” of the subtelties related to the integrability of the stochastic exponential & (L)).

A particular situation which is quite nice is when b(x) =-VV (x) with a sufficiently smooth function V.
Indeed in this case we have, by Ito formula on the canonical space " with the Wiener measure W:

V(wr) = V(wo) f VYV (wy)dw, + f AV (wy)ds

provided V € C?(R") so that by “integrating by parts” we have

exp(for (b(wy),dws)gi—= f |Rnds)—exp( f VV(w,)dws— zf IVV (s, wy)| ds)

1

=6XP(V(wo)—V(wr) YV () —Avws))ds) —d(w)

and the stochastic integral disappear from the exponent. This make the numerical method more stable since
now the functional ®: €" - R, is easily seen to be continuous in the uniform topology on €.

The formula
PXeAn = [, Toanexp(Viwn -Vion -5 [ (VV(@)P-AV(0)ds )W (de)

can be also used to understand other properties of the solutions X of the SDE. Take for example X,=x (call
P, the law of the associated solution to the SDE) and f: R"” —» R and observe that

E(f0r) = [, fonexp(Viwn -Von -5 [ (VV(0)F- AV(@)ds | W (do)



where W, is the Wiener measure starting from x, i.e. with wo=x almost surely. So we can express the
transition kernel P of the time-homogeneous markov process (X;) as

(Pof) ) = B 06 = [, Flonexp V(oo =V(wr) =5 [ 19V (@0F=AV(w))ds | Wido).

17T
[(Prf) (x)] < ||fe‘V||<>oeV<-‘>exp(—jf0 nf (IVV ()P~ AV(x))ds).

So for example, if inf,cr: (|[VV (x)|?= AV (x)) >2a >0 then we have the exponential decay

e™"O|(Prf) (x) < e fe V|,
in other words
le™ (Pif)lle <e™ Tl fe™" |-
Exercise 2. Using the path-integral formula show that for any two bounded functions f, g and under appropriate conditions on V:
J (Prf) (x)g(x)e”V WP dx = ff (Prg) (x)e™V™*dx

which shows that Pr is symmetric wrt. the measure e~ ™®)dx and taking g = 1 show that e=¥®)dx properly normalized is an
invariant measure for the SDE

dX;=-VV(X,)dr+dB,,
meaning that if X is taken with probability distribution cce™"¥)dx then

E[f(Xo1=E[f(X7)],

forall T >0.

Remark on Ex 3 of Sheet 6:

Note the relevant Hilbert space is L>(R") where

[T Vagydx= [ V7 x)d
so Vy=-V,

H(A)f=IV—iAPf+Vf=) (Va=iAs)*(Va—iAa)f+ VS

a=1
=Z —V,+iAg) Z (=Y Vof +iVa(Af) +iAgVof +A%f)
=—Af+i2A-Vf+({(V-A) +|AP)f

From the rep. formula by using Jensen's inequality and taking yq >0

[(e™HDy0) ()< (e Oygp) (x)

w(x) =) e, p0)pa(x) =€ po, wo) po(x) + €Y e EEN g yg) oy (x)

n=0 n

Suggestion take yq to be the lowest eigenfunction of either H(A) or H(0).



Next week: local times and Ito-Tanaka formula.



