Lecture 15 - 2020.06.09 - 12:15 via Zoom



## Ito-Tanaka formula and local times of semimartingales

We want to extend Ito formula to functions which are not  $C^2$ .

Let *X* be a (one-dimensional) semimartingale and  $f: \mathbb{R} \to \mathbb{R}$  a convex function.

Recall that for *f* convex there always exists  $f'_-$  (the derivative from the left) and it is an increasing function. Let  $\rho \in C^{\infty}(\mathbb{R})$  which is compactly supported on  $\{x < 0\}$ , for example in (-1,0) and define

$$f_n(x) \coloneqq n \int \rho(ny) f(x+y) dy$$

which is a smooth function such that  $f_n \to f$  pointwise and for which  $f'_n(x) \nearrow f'_-(x)$ . By Ito formula

$$f_n(X_t) = f_n(X_0) + \int_0^t f'_n(X_s) dX_s + \frac{1}{2} A_t^{f_n}$$

with  $A_t^{f_n} \coloneqq \int_0^t f_n''(X_s) d[X]_s$  a continuous, increasing process. Eventually by using stopping times we can localize the problem so that  $f_-'$  is bounded, morover we note that by Doob's inequality we have (where X = M + V is the decomposition of the semimartingale)

$$\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}\left(f_{n}'(X_{s})-f_{-}'(X_{s})\right)\mathrm{d}M_{s}\right|^{2}\right] \lesssim \mathbb{E}\left[\left|\int_{0}^{T}\left(f_{n}'(X_{s})-f_{-}'(X_{s})\right)\mathrm{d}M_{s}\right|^{2}\right]$$
$$\lesssim \mathbb{E}\left[\int_{0}^{T}\left(f_{n}'(X_{s})-f_{-}'(X_{s})\right)^{2}\mathrm{d}[M]_{s}\right] \to 0$$

by dominated convergence (again maybe put a stopping time to guarantee boundedness). This shows that in probability and uniformly on compact sets (in t)

$$\int_0^t f'_n(X_s) \mathrm{d}M_s \to \int_0^t f'_-(X_s) \mathrm{d}M_s.$$

On the hand, always by dominated convergence (decomposing the finite measure  $dV_s$  into positive and negative parts)

$$\int_0^t f'_n(X_s) \mathrm{d} V_s \to \int_0^t f'_-(X_s) \mathrm{d} V_s$$

We can conclude that we have the following lemma

**Lemma 1.** If X is a continuous semimartingale and f a convex function, then there exists a continuous increasing process  $(A_t^f)_t$  such that

$$f(X_t) = f(X_0) + \int_0^t f'_-(X_s) dX_s + \frac{1}{2} A_t^f, \qquad t \ge 0.$$

We now can take f(x) nice and simple convex functions like |x-a|,  $(x-a)_{\pm}$  where  $(x)_{+} = (x \land 0)$  and  $(x)_{-} := (-x)_{\pm}$ . As a corollary of the previous lemma we then have

**Theorem 2.** (*Tanaka's formula*) For any  $a \in \mathbb{R}$  there exists a continuous increasing process  $(L_t^a)_{t \ge 0}$  such that

$$|X_t - a| = |X_0 - a| + \int_0^t \operatorname{sgn}(X_s - a) dX_s + L_t^a$$
  
$$(X_t - a)_+ = (X_0 - a)_+ + \int_0^t \mathbbm{1}_{X_s > a} dX_s + \frac{1}{2} L_t^a$$
  
$$(X_t - a)_- = (X_0 - a)_- - \int_0^t \mathbbm{1}_{X_s \le a} dX_s + \frac{1}{2} L_t^a$$

where  $\operatorname{sgn}(x) = \mathbb{1}_{x>0} - \mathbb{1}_{x\leq 0}$ .

**Remark 3.** This proves in particular that  $|X_t - a|$ ,  $(X_t - a)_{\pm}$  are semimartingales. The process  $(L_t^a)_{t \ge 0}$  it is called the local time of X at a.

**Proof.** Each of the formulas derives from the previous lemma by computing the left derivative of the various convex functions. The missing point is to identify the various increasing processes  $A^{\text{sgn}(x-a)}, A^{(x-a)+}, A^{(x-a)-}$ . Note that

$$X_t - a = (X_t - a)_+ - (X_t - a)_- = X_0 - a + \int_0^t \underbrace{(\mathbb{1}_{X_s > a} + \mathbb{1}_{X_s \le a})}_{=1} dX_s + \frac{1}{2} (A_t^{(x-a)_+} - A_t^{(x-a)_-})$$

so we have

$$0 = X_t - X_0 - \int_0^t dX_s = \frac{1}{2} (A_t^{(x-a)_+} - A_t^{(x-a)_-}) \Rightarrow A_t^{(x-a)_+} = A_t^{(x-a)_-} =: L_t^a.$$

Moreover

$$|X_t - a| = (X_t - a)_+ + (X_t - a)_- + \int_0^t \underbrace{(\mathbbm{1}_{X_s > a} - \mathbbm{1}_{X_s \le a})}_{=\operatorname{sgn}(X_s - a)} dX_s + \underbrace{\frac{1}{2}(A_t^{(x-a)_+} + A_t^{(x-a)_-})}_{L_t^a}}_{L_t^a}$$

The increasing process  $(L_t^a)_{t\geq 0}$  is associated with a measure  $dL_t^a$  on  $\mathbb{R}_+$  (times) which represents the time the process X "spent" in *a* up to time *t*. We are going to make this precise in the following.

By Ito formula wrt. the semimartingale  $(|X_t - a|)_{t \ge 0}$  (with X = M + V)

$$(X_t - a)^2 = (|X_t - a|)^2 = (|X_0 - a|)^2 + 2\int_0^t |X_s - a| \operatorname{sgn}(X_s - a) dX_s + 2\int_0^t |X_s - a| dL_s^a + [|X_s - a|]_t$$
$$= (X_0 - a)^2 + 2\int_0^t (X_s - a) dX_s + 2\int_0^t |X_s - a| dL_s^a + \int_0^t \underbrace{\operatorname{sgn}(X_s - a)^2}_{=1} d[M]_s$$

And by comparing with the standard Ito formula

$$(X_t - a)^2 = (X_0 - a)^2 + 2 \int_0^t (X_s - a) dX_s + [X]_t = [M]_t$$

we conclude that

$$\int_0^t |X_s - a| \mathrm{d}L_s^a = 0, \qquad t \ge 0$$

which proves that the measure  $(dL_s^a)_{s\geq 0}$  is supported in the (random) set  $\{s \in \mathbb{R}: X_s = a\}$  of times. The process  $L^a$  increases only when the process X visits a (in general this will be a "fractal-like" and with zero Lebesgue measure).

For Brownian motion is it true (we will not prove it) that the set  $\{s \in \mathbb{R} : X_s = a\}$  is the support of the measure  $(L_t^a)_{t \ge 0}$ .

**Theorem 4.** (*Ito–Tanaka formula*) If *f* is the difference of two convex functions and X a continuous semimartingale, then

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_{\mathbb{R}} L_t^a f''(da)$$

and in particular  $(f(X_t))_{t \ge 0}$  is a semimartingale.

In this formula f''(da) denotes the measure associated to the second derivative of a convex function (and therefore of a difference of two convex functions, by linearity).

Recall that for any convex function f we have the formula

$$f(x) = \alpha + \beta x + \frac{1}{2} \int |x - a| f^{\prime\prime}(\mathrm{d}a), \qquad x \in \mathbb{R}$$

and

$$f'_{-}(x) = \beta + \frac{1}{2} \int \operatorname{sgn}(x-a) f''(\mathrm{d}a), \quad x \in \mathbb{R}$$

for some  $\alpha, \beta \in \mathbb{R}$  and f''(da) is the measure associated to the increasing function  $(f'_{-}(x))_{x \in \mathbb{R}}$  (convex functions are those functions whose second distributional derivative is a positive Radon measure). The idea is that

$$\frac{\mathrm{d}}{\mathrm{d}x}|x-a| = 2\delta(x-a)$$

which justify intuitively the 1/2 in the formula.

Proof. We can write

$$f(X_t) = \alpha + \beta X_t + \frac{1}{2} \int |X_t - a| f^{\prime\prime}(\mathrm{d}a)$$

by Tanaka's formula

$$f(X_t) = \alpha + \beta X_0 + \beta \int_0 dX_s + \frac{1}{2} \int |X_0 - \alpha| f''(d\alpha) + \frac{1}{2} \int \left( \int_0^t \operatorname{sgn}(X_s - \alpha) dX_s \right) f''(d\alpha) + \frac{1}{2} \int L_t^a f''(d\alpha)$$

Note that this computation makes sense since the stochastic integral  $\int_0^t \operatorname{sgn}(X_s - a) dX_s$  is a measurable function of *a*, more precisely (see the relevant exercise in Sheet 7) the function

$$(a,t,\omega)\mapsto \left(\int_0^t \operatorname{sgn}(X_s-a)\mathrm{d}X_s\right)(\omega)$$

is a measurable function on  $\mathscr{B}(\mathbb{R}) \otimes \mathscr{P}(\mathscr{P})$  is the previsible  $\sigma$  field on  $\mathbb{R}_+ \times \Omega$ ) and also a (stochastic) Fubini theorem applies so that

$$\int \left(\int_0^t \operatorname{sgn}(X_s - a) \mathrm{d}X_s\right) f^{\prime\prime}(\mathrm{d}a) = \int_0^t \left(\int \operatorname{sgn}(X_s - a) f^{\prime\prime}(\mathrm{d}a)\right) \mathrm{d}X_s$$

Moreover we note that

$$\beta \int_0^t dX_s + \frac{1}{2} \int_0^t \left( \int \operatorname{sgn}(X_s - a) f''(da) \right) dX_s = \int_0^t f'_-(X_s) dX_s$$

which completes the proof.

**Corollary 5.** (*Occupation-time formula*) *There is a*  $\mathbb{P}$ *-negligible set*  $\mathcal{N}$  *outside which for any*  $t \ge 0$  *and any positive Borel function*  $g: \mathbb{R} \to \mathbb{R}_+$  *we have* 

$$\int_0^t g(X_s) \mathrm{d}[X]_s = \int_{\mathbb{R}} g(a) L_t^a \mathrm{d}a.$$

**Remark 6.** The measure  $d[X]_s$  can be understood as some "intrinsic" time of the semimartingale. In particular, for Brownian motion *X* we have  $d[X]_s = ds$  and if we take  $g(x) = \mathbb{1}_{x \in A}$  for some set  $A \in \mathcal{B}(\mathbb{R})$  we have

$$\operatorname{Leb}(\{s \in [0, t] : X_s \in A\}) = \int_0^t \mathbb{1}_{X_s \in A} \mathrm{d}s = \int_A L_t^a \mathrm{d}a.$$

In this sense  $L_t^a da$  represents the time spent by X in the infinitesimal neighborhood  $a \pm da$ .

**Proof.** For any  $g: \mathbb{R} \to \mathbb{R}_+$  we can find a convex function f such that f'' = g, i.e. we can take f''(da) = g(a)da in the formula above. By Tanaka's formula we then have

$$f(X_t) = f(X_0) + \int_0^t f'_-(X_s) dX_s + \frac{1}{2} \int_{\mathbb{R}} g(a) L_t^a da. \quad \mathbb{P} - a.s$$

Take a countable family  $(g_n)_{n\geq 0}$  of compactly supported continuous functions which is dense in  $C_0(\mathbb{R})$  and consider now  $f_n$  so that  $f'_n = g_n$ , note that  $f_n \in C^2$  and  $f'_{n,-} = f'_{n,+} = f'_n$ . I have now both Ito-Tanaka's formula and Ito formula (note that  $f_n$  is the difference of two convex functions)

$$f_n(X_t) = f_n(X_0) + \int_0^t f'_n(X_s) dX_s + \frac{1}{2} \int_0^t g_n(X_s) d[X]_s. \qquad \mathbb{P} - a.s.$$

So by comparing these two formulas we have

$$\ell_t(g_n) \coloneqq \int_{\mathbb{R}} g_n(a) L_t^a \mathrm{d}a = \int_0^t g_n(X_s) \mathrm{d}[X]_s. \qquad \mathbb{P} - a.s.$$

This equality holds a.s. for any  $g_n$  and one can choose a  $\mathbb{P}$ -negligible set  $\mathcal{N}$  such that the equalities holds simultaneously for all n and all  $t \ge 0$  (since the quantity  $\ell_t(g_n)$  is continuous in time and therefore can be detemined by looking to a dense set of times  $(t_k)_k$ ).

One note now that for any  $t \ge 0$ , the functional  $\ell_t$  is a positive linear functional on  $C_0(\mathbb{R})$  which is continuous in the uniform norm on  $C_0(\mathbb{R})$  so can be extended by continuity to all functions in  $C_0(\mathbb{R})$  and by a monotone class argument to all Borel positive functions.

Thursday no lecture.

Next lecture on tuesday: we prove that  $a \mapsto L_t^a$  is cadlag and that there is a formula of the form

$$L_t^a = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t \mathbb{1}_{X_s \in (a, a+\varepsilon)} d[X]_s$$

and for *X* a martingale

$$L_t^a = \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{X_s \in (a-\varepsilon, a+\varepsilon)} \mathbf{d}[X]_s.$$

We continue to discuss some properties of local time of Brownian motion and reflected Brownian motion.

For Exercise Sheet 7, exercise 2, the invariant measure should be  $e^{-2V}$  and not  $e^{-V}$ .