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Lecture 15 – 2020.06.09 – 12:15 via Zoom

Ito–Tanaka formula and local times of semimartingales

We want to extend Ito formula to functions which are not C2.
Let X be a (one-dimensional) semimartingale and f :ℝ→ℝ a convex function.
Recall that for f convex there always exists f−′ (the derivative from the left) and it is an increasing function.
Let 𝜌∈C∞(ℝ) which is compactly supported on {x <0}, for example in (−1, 0) and define

fn(x)≔n� 𝜌(ny) f (x +y)dy

which is a smooth function such that fn → f pointwise and for which fn′(x)↗ f−′(x). By Ito formula

fn(Xt)= fn(X0)+�
0

t
fn′(Xs)dXs + 1

2 At
fn

with At
fn ≔ ∫0

t fn′′(Xs)d[X]s a continuous, increasing process. Eventually by using stopping times we can
localize the problem so that f−′ is bounded, morover we note that by Doob's inequality we have (where
X =M +V is the decomposition of the semimartingale)

𝔼[[[[[[[[[[[[ sup
t∈[0,T ]

��
0

t
( fn′(Xs)− f−′(Xs))dMs�

2]]]]]]]]]]]]≲𝔼���
0

T
( fn′(Xs)− f−′(Xs))dMs�

2�

≲𝔼��
0

T
( fn′(Xs)− f−′(Xs))2d[M]s�→0

by dominated convergence (again maybe put a stopping time to guarantee boundedness). This shows that
in probability and uniformly on compact sets (in t)

�
0

t
fn′(Xs)dMs →�

0

t
f−′(Xs)dMs.

On the hand, always by dominated convergence (decomposing the finite measure dVs into positive and
negative parts)

�
0

t
fn′(Xs)dVs →�

0

t
f−′(Xs)dVs.

We can conclude that we have the following lemma

Lemma 1. If X is a continuous semimartingale and f a convex function, then there exists a continuous
increasing process (At

f)t such that

f (Xt)= f (X0)+�
0

t
f−′(Xs)dXs +

1
2 At

f , t ⩾0.

We now can take f (x) nice and simple convex functions like |x − a|, (x − a)± where (x)+ = (x ∧ 0) and
(x)− ≔(−x)+. As a corollary of the previous lemma we then have

Theorem 2. (Tanaka's formula) For any a∈ ℝ there exists a continuous increasing process (Lt
a)t⩾0 such

that

|Xt −a| = |X0 −a| +�
0

t
sgn(Xs −a)dXs +Lt

a

(Xt −a)+ =(X0 −a)+ +�
0

t
1Xs>adXs +

1
2Lt

a

(Xt −a)− =(X0 −a)− −�
0

t
1Xs⩽adXs +

1
2Lt

a
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where sgn(x)=1x>0 −1x⩽0.

Remark 3. This proves in particular that |Xt − a|, (Xt − a)± are semimartingales. The process (Lt
a)t⩾0 it is

called the local time of X at a.

Proof. Each of the formulas derives from the previous lemma by computing the left derivative of the
various convex functions. The missing point is to identify the various increasing processes Asgn(x−a), A(x−a)+,
A(x−a)−. Note that

Xt −a=(Xt −a)+ − (Xt −a)− =X0 −a+�
0

t
(1Xs>a +1Xs⩽a)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=1

dXs +
1
2(At

(x−a)+ − At
(x−a)−)

so we have

0=Xt −X0−�
0

t
dXs =

1
2(At

(x−a)+ − At
(x−a)−)⇒ At

(x−a)+ = At
(x−a)− ≔Lt

a.

Moreover

|Xt −a| =(Xt −a)+ +(Xt −a)− +�
0

t
(1Xs>a −1Xs⩽a)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=sgn(Xs−a)

dXs +
1
2(At

(x−a)+ + At
(x−a)−)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Lt
a

□

The increasing process (Lt
a)t⩾0 is associated with a measure dLt

a on ℝ+ (times) which represents the time
the process X “spent” in a up to time t. We are going to make this precise in the following.

By Ito formula wrt. the semimartingale (|Xt −a|)t⩾0 (with X =M +V )

(Xt −a)2 =(|Xt −a|)2 =(|X0 −a|)2 +2�
0

t
|Xs −a|sgn(Xs −a)dXs +2�

0

t
|Xs −a|dLs

a +[|X⋅ −a|]t

=(X0 −a)2 +2�
0

t
(Xs −a)dXs +2�

0

t
|Xs −a|dLs

a +�
0

t
sgn(Xs −a)2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=1

d[M]s

And by comparing with the standard Ito formula

(Xt −a)2 =(X0 −a)2 +2�
0

t
(Xs −a)dXs + [X]t�

=[M]t

we conclude that

�
0

t
|Xs −a|dLs

a =0, t ⩾0

which proves that the measure (dLs
a)s⩾0 is supported in the (random) set {s ∈ ℝ: Xs = a} of times. The

process La increases only when the process X visits a (in general this will be a “fractal-like” and with zero
Lebesgue measure).
For Brownian motion is it true (we will not prove it) that the set {s∈ℝ:Xs=a} is the support of the measure
(Lt

a)t⩾0.

Theorem 4. (Ito–Tanaka formula) If f is the difference of two convex functions and X a continuous semi-
martingale, then

f (Xt)= f (X0)+�
0

t
f−′(Xs)dXs + 1

2�
ℝ

Lt
a f ′′(da)

and in particular ( f (Xt))t⩾0 is a semimartingale.

In this formula f ′′(da) denotes the measure associated to the second derivative of a convex function (and
therefore of a difference of two convex functions, by linearity).
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Recall that for any convex function f we have the formula

f (x)=𝛼+𝛽x + 1
2� |x −a| f ′′(da), x ∈ℝ

and

f−′(x)=𝛽+1
2� sgn(x −a) f ′′(da), x ∈ℝ

for some 𝛼, 𝛽 ∈ ℝ and f ′′(da) is the measure associated to the increasing function ( f−′(x))x∈ℝ (convex
functions are those functions whose second distributional derivative is a positive Radon measure).
The idea is that

d
dx |x −a|=2𝛿(x −a)

which justify intuitively the 1/2 in the formula.

Proof. We can write

f (Xt)=𝛼+𝛽Xt +
1
2� |Xt −a| f ′′(da)

by Tanaka's formula

f (Xt)=𝛼+𝛽X0+𝛽�
0

dXs +
1
2� |X0−a| f ′′(da)+ 1

2� ��
0

t
sgn(Xs −a)dXs� f ′′(da)

+1
2� Lt

a f ′′(da)

Note that this computation makes sense since the stochastic integral ∫0
t sgn(Xs − a)dXs is a measurable

function of a, more precisely (see the relevant exercise in Sheet 7) the function

(a, t,𝜔)↦��
0

t
sgn(Xs −a)dXs�(𝜔)

is a measurable function on ℬ(ℝ)⊗𝒫 (𝒫 is the previsible 𝜎 field on ℝ+×Ω) and also a (stochastic) Fubini
theorem applies so that

� ��
0

t
sgn(Xs −a)dXs� f ′′(da)=�

0

t
�� sgn(Xs −a) f ′′(da)�dXs

Moreover we note that

𝛽�
0

t
dXs +

1
2�

0

t
�� sgn(Xs −a) f ′′(da)�dXs =�

0

t
f−′(Xs)dXs

which completes the proof. □

Corollary 5. (Occupation-time formula) There is a ℙ-negligible set 𝒩 outside which for any t⩾0 and any
positive Borel function g:ℝ→ℝ+ we have

�
0

t
g(Xs)d[X]s =�

ℝ
g(a)Lt

ada.

Remark 6. The measure d[X]s can be understood as some “intrinsic” time of the semimartingale. In partic-
ular, for Brownian motion X we have d[X]s=ds and if we take g(x)=1x∈A for some set A∈ℬ(ℝ) we have

Leb({s∈[0, t]:Xs ∈ A})=�
0

t
1Xs∈Ads=�

A
Lt

ada.

In this sense Lt
ada represents the time spent by X in the infinitesimal neighborhood a±da.
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Proof. For any g: ℝ → ℝ+ we can find a convex function f such that f ′′ = g, i.e. we can take f ′′(da) =
g(a)da in the formula above. By Tanaka's formula we then have

f (Xt)= f (X0)+�
0

t
f−′(Xs)dXs +

1
2�

ℝ
g(a)Lt

ada. ℙ−a.s.

Take a countable family (gn)n⩾0 of compactly supported continuous functions which is dense in C0(ℝ) and
consider now fn so that fn′′=gn, note that fn∈C2 and fn,−′ = fn,+′ = fn′. I have now both Ito-Tanaka's formula
and Ito formula (note that fn is the difference of two convex functions)

fn(Xt)= fn(X0)+�
0

t
fn′(Xs)dXs +

1
2�

0

t
gn(Xs)d[X]s. ℙ−a.s.

So by comparing these two formulas we have

ℓt(gn)≔�
ℝ

gn(a)Lt
ada=�

0

t
gn(Xs)d[X]s. ℙ−a.s.

This equality holds a.s. for any gn and one can choose a ℙ-negligible set 𝒩 such that the equalities holds
simultaneously for all n and all t ⩾ 0 (since the quantity ℓt(gn) is continuous in time and therefore can be
detemined by looking to a dense set of times (tk)k).
One note now that for any t ⩾0, the functional ℓt is a positive linear functional on C0(ℝ) which is contin-
uous in the uniform norm on C0(ℝ) so can be extended by continuity to all functions in C0(ℝ) and by a
monotone class argument to all Borel positive functions. □

Thursday no lecture.
Next lecture on tuesday: we prove that a↦Lt

a is cadlag and that there is a formula of the form

Lt
a =lim

𝜀↓0

1
𝜀�

0

t
1Xs∈(a,a+𝜀)d[X]s

and for X a martingale

Lt
a =lim

𝜀↓0

1
2𝜀�

0

t
1Xs∈(a−𝜀,a+𝜀)d[X]s.

We continue to discuss some properties of local time of Brownian motion and reflected Brownian motion.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

For Exercise Sheet 7, exercise 2, the invariant measure should be e−2V and not e−V.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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