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Ito-Tanaka formula and local times of semimartingales

We want to extend Ito formula to functions which are not C2.
Let X be a (one-dimensional) semimartingale and f: R — R a convex function.
Recall that for f convex there always exists f” (the derivative from the left) and it is an increasing function.

Let p € C*(R) which is compactly supported on {x <0}, for example in (-1,0) and define

fal)s=n p(ny)f(x-+y)dy
which is a smooth function such that f, - f pointwise and for which f;, (x) » f(x). By Ito formula
1
JoX) = f3(Xo) + [[ X)X, + 74T
with A];” = fot f/(X,)d[X], a continuous, increasing process. Eventually by using stopping times we can

localize the problem so that f’ is bounded, morover we note that by Doob's inequality we have (where
X =M +V is the decomposition of the semimartingale)
|

<EW (f1(X,) - £ (X,))dM,

[sup\f (X0 = £ (X))

te[0,T]
<EB[ [ (- x)aim| -0

by dominated convergence (again maybe put a stopping time to guarantee boundedness). This shows that
in probability and uniformly on compact sets (in )

ffn dM_>ff

On the hand, always by dominated convergence (decomposing the finite measure dV; into positive and
negative parts)

[ rixaavis [ x
We can conclude that we have the following lemma

Lemma 1. If X is a continuous semimartingale and f a convex function, then there exists a continuous
increasing process (A{ )t such that

(X)) = f(Xo) + ff dX+;Af £>0.

We now can take f(x) nice and simple convex functions like |x —al|, (x —a), where (x), = (x A0Q) and
(x)-:=(=x);. As acorollary of the previous lemma we then have

Theorem 2. (Tanaka's formula) For any a € R there exists a continuous increasing process (L{'),so such
that

t
|X,—a|:|X0—a|+I sgn(X;—a)dX, + L

1
(X,—a), = (Xo-a) f L adX, + L

! 1
(Xi=a)-= (Xo=a)-- || LxcadX,+5L!



where sgn(x) = 1,50— L,<o.

Remark 3. This proves in particular that |X; —al, (X; —a) . are semimartingales. The process (L{)5 it is
called the local time of X at a.

Proof. Each of the formulas derives from the previous lemma by computing the left derivative of the
various convex functions. The missing point is to identify the various increasing processes ASE"¥ =@ Ax=a)+
A%=9-_ Note that

' 1, e _
Xi—a=(X;=a), = (Xi=a)-=Xo=a+ || (Lxsa+ Ly.c)dX;+ 5 (A4S = ALK
_:T__./
so we have
4 1 (x—a)+ (x—a)- (x—a)+ (x-a)- a
0=X,—X0—f0 dX, = (AT = APT) 5 AP = AR

Moreover
t
0 2
=sgn(X;—a) Lo

1 X—a)+ X—=a)-
X;=al= (X=a), + (Xi=a)-+ [ (Lxoa= Ly dXs+ 5 (A8 + 4K
—

O

The increasing process (L{');>¢ is associated with a measure dL{ on R, (times) which represents the time
the process X “spent” in a up to time t. We are going to make this precise in the following.

By Ito formula wrt. the semimartingale (X, —al);>0 (With X =M +V)
t t
(X;—a)*=(1X,—al)*= (1Xo—al)*+ 2f0 IX;—alsgn(X;—a)dX; + 2f0 IXs—aldL§ + [IX. - all,

=<x0-a)2+2f’ (X,—a)dX +2f’ X —a|dL”+ft sgn(X,—a)?d[M]
0 5 5 0 5 S 0 5 _ N
=1

And by comparing with the standard Ito formula

t
(Xi-a)=(Xo-a)+2 [ (X;-a)dX,+ [X],
=[M];
we conclude that

t
fo X,—aldLé=0, 120

which proves that the measure (dLj)sso is supported in the (random) set {s € R: X;=a} of times. The
process L increases only when the process X visits a (in general this will be a “fractal-like”” and with zero
Lebesgue measure).

For Brownian motion is it true (we will not prove it) that the set {s € R: X;=a} is the support of the measure
(L) 0.

Theorem 4. (Ito-Tanaka formula) If f is the difference of two convex functions and X a continuous semi-
martingale, then

£ =f X+ [ X)X, + 5 [ Lif” (da)
t) = 0 0’ s sTH R t
and in particular (f(X;)):>o0 is a semimartingale.

In this formula f’’(da) denotes the measure associated to the second derivative of a convex function (and
therefore of a difference of two convex functions, by linearity).



Recall that for any convex function f we have the formula

£x) =a+ﬁx+%f k-alf’(da), xeR

and
f_’(x):ﬁ+%f sgn(x—a)f'’(da), xeR

for some «, B € R and f"’(da) is the measure associated to the increasing function ( £ (x))rer (convex
functions are those functions whose second distributional derivative is a positive Radon measure).

The idea is that

d
alx—al =28(x—a)
which justify intuitively the 1/2 in the formula.

Proof. We can write

FX)=a+ pX,+ 5 [ K—alf” (da)

by Tanaka's formula
] Va4 ] 144
F(X) =a+ BXo+ ﬁfo dXS+7I Xo—alf” (da) +7f (fot sgn(XS—a)dXS)f (da)
1 ’
+§f LéF” (da)

Note that this computation makes sense since the stochastic integral fot sgn(X;—a)dX; is a measurable
function of a, more precisely (see the relevant exercise in Sheet 7) the function

(@, 0) - (fo' sen(X,-a)dX, ) (o)

is a measurable function on B(R) @ P (& is the previsible ¢ field on R, x Q) and also a (stochastic) Fubini
theorem applies so that

[ ([ sentXo-arax;,) £ day = [ ( [ sen(X,-a)f” day Jax,
Moreover we note that
Bl ax o1 [ ( [ senXi-arf " da) Jax,= [ £,

which completes the proof. O

Corollary 5. (Occupation-time formula) There is a P-negligible set V" outside which for any t >0 and any
positive Borel function g: R - R, we have

t
[, 8X0diX1,= [ g@Lida.

Remark 6. The measure d[X]; can be understood as some “intrinsic” time of the semimartingale. In partic-
ular, for Brownian motion X we have d[X],=ds and if we take g(x) = 1,4 for some set A € %B(R) we have

Leb({s€[0,1]:X,€A)) = [ 0’ Iycads= [ Lida,

In this sense L{'da represents the time spent by X in the infinitesimal neighborhood a + da.



Proof. For any g: R - R, we can find a convex function f such that f'' =g, i.e. we can take f"'(da) =
g(a)da in the formula above. By Tanaka's formula we then have

F(X) = f(Xo) + fot f (Xs)dxs+%fR g@Lida. P-as.

Take a countable family (g,),>0 of compactly supported continuous functions which is dense in Co(R ) and
consider now f; so that f,” =g, note that f,€ C*>and f,_ = f, . = f,. T have now both Ito-Tanaka's formula
and Ito formula (note that f; is the difference of two convex functions)

t 1 rt
FalX0) = X0+ [ F(X0dX,+5 [ n(X)dIX].  P-as.
So by comparing these two formulas we have
a t
08 = [, gal@Lida= [ ga(X)diX].  P-as.

This equality holds a.s. for any g, and one can choose a P-negligible set 4" such that the equalities holds
simultaneously for all n and all 7> 0 (since the quantity €,(g,) is continuous in time and therefore can be
detemined by looking to a dense set of times (#);).

One note now that for any 7> 0, the functional ¢, is a positive linear functional on Cy(R) which is contin-
uous in the uniform norm on Cy(R) so can be extended by continuity to all functions in Cy(R) and by a
monotone class argument to all Borel positive functions. O

Thursday no lecture.

Next lecture on tuesday: we prove that a+~ L{ is cadlag and that there is a formula of the form

.1
L?=1£1§)1;J‘0 Ix,caa+e)d[X]s

and for X a martingale

w1
Lt =1‘51{{)1§J‘0 ﬂXye(a—s,[Hs)d[X]y

We continue to discuss some properties of local time of Brownian motion and reflected Brownian motion.

For Exercise Sheet 7, exercise 2, the invariant measure should be e~2¥ and not e¢~".






