Lecture 15 – 2020.06.09 – 12:15 via Zoom

Ito–Tanaka formula and local times of semimartingales

We want to extend Ito formula to functions which are not *C* 2 .

Let *X* be a (one-dimensional) semimartingale and $f: \mathbb{R} \to \mathbb{R}$ a convex function.

Recall that for *f* convex there always exists *f*_−^{$'$} (the derivative from the left) and it is an increasing function. Let ρ ∈ $C^{\infty}(\mathbb{R})$ which is compactly supported on {*x* < 0}, for example in (−1, 0) and define

$$
f_n(x) := n \int \rho(ny) f(x+y) \, dy
$$

which is a smooth function such that $f_n \to f$ pointwise and for which $f'_n(x) \nearrow f'_-(x)$. By Ito formula

$$
f_n(X_t) = f_n(X_0) + \int_0^t f'_n(X_s) dX_s + \frac{1}{2} A_t^{f_n}
$$

with $A_t^{f_n} := \int_0^t f'_n(x_s) d[X]_s$ a continuous, increasing process. Eventually by using stopping times we can localize the problem so that *f*−′ is bounded, morover we note that by Doob's inequality we have (where $X = M + V$ is the decomposition of the semimartingale)

$$
\mathbb{E}\Bigg[\sup_{t\in[0,T]}\Big|\int_0^t\left(f'_n(X_s)-f'_-(X_s)\right)\mathrm{d}M_s\Big|^2\Bigg]\lesssim \mathbb{E}\Big[\Big|\int_0^T\left(f'_n(X_s)-f'_-(X_s)\right)\mathrm{d}M_s\Big|^2\Big]\Bigg]
$$

$$
\lesssim \mathbb{E}\Big[\int_0^T\left(f'_n(X_s)-f'_-(X_s)\right)^2\mathrm{d}[M]_s\Big]\to 0
$$

by dominated convergence (again maybe put a stopping time to guarantee boundedness). This shows that in probability and uniformly on compact sets (in *t*)

$$
\int_0^t f'_n(X_s) \mathrm{d}M_s \to \int_0^t f'_-(X_s) \mathrm{d}M_s.
$$

On the hand, always by dominated convergence (decomposing the finite measure dV_s into positive and negative parts)

$$
\int_0^t f'_n(X_s) dV_s \to \int_0^t f'_-(X_s) dV_s.
$$

We can conclude that we have the following lemma

Lemma 1. If X is a continuous semimartingale and f a convex function, then there exists a continuous *increasing process* (*A^t ^f*)*^t such that*

$$
f(X_t) = f(X_0) + \int_0^t f'_{-}(X_s) dX_s + \frac{1}{2} A_t^f, \qquad t \ge 0.
$$

We now can take $f(x)$ nice and simple convex functions like $|x - a|$, $(x - a)_+$ where $(x)_+ = (x \wedge 0)$ and $(x) = (-x)_+$. As a corollary of the previous lemma we then have

Theorem 2. *(Tanaka's formula) For any* $a \in \mathbb{R}$ *there exists a continuous increasing process* $(L_t^a)_{t \geq 0}$ *such that*

$$
|X_t - a| = |X_0 - a| + \int_0^t \operatorname{sgn}(X_s - a) \, dX_s + L_t^a
$$

$$
(X_t - a)_+ = (X_0 - a)_+ + \int_0^t \mathbb{1}_{X_s > a} \, dX_s + \frac{1}{2} L_t^a
$$

$$
(X_t - a)_- = (X_0 - a)_- - \int_0^t \mathbb{1}_{X_s \le a} \, dX_s + \frac{1}{2} L_t^a
$$

where $sgn(x) = 1$ _{*x*>0}−1_{*x*≤0}.

Remark 3. This proves in particular that $|X_t - a|$, $(X_t - a)_+$ are semimartingales. The process $(L_t^a)_{t \geq 0}$ it is called the local time of *X* at *a*.

Proof. Each of the formulas derives from the previous lemma by computing the left derivative of the various convex functions. The missing point is to identify the various increasing processes $A^{\text{sgn}(x-a)}$, $A^{(x-a)+}$, *A* (*x*−*a*)− . Note that

$$
X_t - a = (X_t - a)_+ - (X_t - a)_- = X_0 - a + \int_0^t \underbrace{(\mathbb{1}_{X_s > a} + \mathbb{1}_{X_s < a})}_{=1} dX_s + \frac{1}{2} (A_t^{(x-a)_+} - A_t^{(x-a)_-})
$$

so we have

$$
0 = X_t - X_0 - \int_0^t dX_s = \frac{1}{2} (A_t^{(x-a)_+} - A_t^{(x-a)_-}) \Rightarrow A_t^{(x-a)_+} = A_t^{(x-a)_-} =: L_t^a.
$$

Moreover

$$
|X_t - a| = (X_t - a)_+ + (X_t - a)_- + \int_0^t \underbrace{(1_{X_s > a} - 1_{X_s < a})}_{=sgn(X_s - a)} dX_s + \underbrace{\frac{1}{2} (A_t^{(x-a)_+} + A_t^{(x-a)_-})}_{L_t^a}
$$

The increasing process $(L_t^a)_{t\geq 0}$ is associated with a measure dL_t^a on \mathbb{R}_+ (times) which represents the time the process *X* "spent" in *a* up to time *t*. We are going to make this precise in the following.

By Ito formula wrt. the semimartingale $(|X_t - a|)_{t \ge 0}$ (with $X = M + V$)

$$
(X_t - a)^2 = (|X_t - a|)^2 = (|X_0 - a|)^2 + 2 \int_0^t |X_s - a| \operatorname{sgn}(X_s - a) \, dX_s + 2 \int_0^t |X_s - a| \, dL_s^a + [|X - a|]_t
$$

= $(X_0 - a)^2 + 2 \int_0^t (X_s - a) \, dX_s + 2 \int_0^t |X_s - a| \, dL_s^a + \int_0^t \underbrace{\operatorname{sgn}(X_s - a)^2}_{=1} \, d[M]_s$

And by comparing with the standard Ito formula

$$
(X_t - a)^2 = (X_0 - a)^2 + 2 \int_0^t (X_s - a) dX_s + \underbrace{[X]}_{= [M]_t}
$$

we conclude that

$$
\int_0^t |X_s - a| \mathrm{d}L_s^a = 0, \qquad t \geq 0
$$

which proves that the measure $(dL_s^a)_{s\geq0}$ is supported in the (random) set $\{s \in \mathbb{R} : X_s = a\}$ of times. The process L^a increases only when the process *X* visits *a* (in general this will be a "fractal-like" and with zero Lebesgue measure).

For Brownian motion is it true (we will not prove it) that the set ${s \in \mathbb{R} : X_s = a}$ is the support of the measure $(L_t^a)_{t \geq 0}$.

Theorem 4. *(Ito–Tanaka formula) If f is the difference of two convex functions and X acontinuous semi martingale, then*

$$
f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_{\mathbb{R}} L_t^a f''(\mathrm{d}a)
$$

and in particular $(f(X_t))_{t\geq0}$ *is a semimartingale.*

In this formula $f''(da)$ denotes the measure associated to the second derivative of a convex function (and therefore of a difference of two convex functions, by linearity).

Recall that for any convex function *f* we have the formula

$$
f(x) = \alpha + \beta x + \frac{1}{2} \int |x - a| f''(da), \qquad x \in \mathbb{R}
$$

and

$$
f'_{-}(x) = \beta + \frac{1}{2} \int \operatorname{sgn}(x - a) f''(da), \qquad x \in \mathbb{R}
$$

for some $\alpha, \beta \in \mathbb{R}$ and $f''(da)$ is the measure associated to the increasing function $(f'_{-}(x))_{x \in \mathbb{R}}$ (convex functions are those functions whose second distributional derivative is a positive Radon measure). The idea is that

$$
\frac{\mathrm{d}}{\mathrm{d}x}|x-a|=2\delta(x-a)
$$

which justify intuitively the $1/2$ in the formula.

Proof. We can write

$$
f(X_t) = \alpha + \beta X_t + \frac{1}{2} \int |X_t - a| f^{\prime\prime} (da)
$$

by Tanaka's formula

$$
f(X_t) = \alpha + \beta X_0 + \beta \int_0^{\infty} dX_s + \frac{1}{2} \int |X_0 - a| f''(da) + \frac{1}{2} \int \left(\int_0^t sgn(X_s - a) dX_s \right) f''(da) + \frac{1}{2} \int L_t^a f''(da)
$$

Note that this computation makes sense since the stochastic integral $\int_0^t \text{sgn}(X_s - a) dX_s$ is a measurable function of *a*, more precisely (see the relevant exercise in Sheet 7) the function

$$
(a,t,\omega)\mapsto \left(\int_0^t \operatorname{sgn}(X_s-a)\mathrm{d}X_s\right)(\omega)
$$

is a measurable function on $\mathcal{B}(\mathbb{R})\otimes \mathcal{P}(\mathcal{P})$ is the previsible σ field on $\mathbb{R}_+\times \Omega$) and also a (stochastic) Fubini theorem applies so that

$$
\int \left(\int_0^t \mathrm{sgn}(X_s - a) dX_s \right) f^{\prime \prime} (da) = \int_0^t \left(\int \mathrm{sgn}(X_s - a) f^{\prime \prime} (da) \right) dX_s
$$

Moreover we note that

$$
\beta \int_0^t dX_s + \frac{1}{2} \int_0^t \left(\int \text{sgn}(X_s - a) f''(da) \right) dX_s = \int_0^t f'_-(X_s) dX_s
$$

which completes the proof. \Box

Corollary 5. *(Occupation-time formula) There is* $a \mathbb{P}$ *-negligible set* $\mathcal N$ *outside which for any* $t \ge 0$ *and any positive Borel function g*:ℝ→ℝ⁺ *we have*

$$
\int_0^t g(X_s) d[X]_s = \int_{\mathbb{R}} g(a) L_t^a da.
$$

Remark 6. The measure $d[X]_s$ can be understood as some "intrinsic" time of the semimartingale. In particular, for Brownian motion *X* we have d[*X*]_{*s*}=d*s* and if we take $g(x) = 1_{x \in A}$ for some set $A \in \mathcal{B}(\mathbb{R})$ we have

$$
\text{Leb}(\{s \in [0, t]: X_s \in A\}) = \int_0^t \mathbb{1}_{X_s \in A} ds = \int_A L_t^a da.
$$

In this sense L_t^a da represents the time spent by *X* in the infinitesimal neighborhood $a \pm da$.

Proof. For any $g: \mathbb{R} \to \mathbb{R}_+$ we can find a convex function *f* such that $f'' = g$, i.e. we can take $f''(da) =$ $g(a)da$ in the formula above. By Tanaka's formula we then have

$$
f(X_t) = f(X_0) + \int_0^t f'_-(X_s) dX_s + \frac{1}{2} \int_{\mathbb{R}} g(a) L_t^a da.
$$
 $\mathbb{P}-a.s.$

Take a countable family $(g_n)_{n\geq 0}$ of compactly supported continuous functions which is dense in $C_0(\mathbb{R})$ and consider now f_n so that $f_n'' = g_n$, note that $f_n \in C^2$ and $f_{n,-} = f_{n,+}' = f_n'$. I have now both Ito-Tanaka's formula and Ito formula (note that f_n is the difference of two convex functions)

$$
f_n(X_t) = f_n(X_0) + \int_0^t f'_n(X_s) dX_s + \frac{1}{2} \int_0^t g_n(X_s) d[X]_s. \qquad \mathbb{P}-a.s.
$$

So by comparing these two formulas we have

$$
\ell_t(g_n) \coloneqq \int_{\mathbb{R}} g_n(a) L_t^a \mathrm{d}a = \int_0^t g_n(X_s) \mathrm{d}[X]_s. \qquad \mathbb{P}-a.s.
$$

This equality holds a.s. for any g_n and one can choose a P-negligible set N such that the equalities holds simultaneously for all *n* and all $t \ge 0$ (since the quantity $\ell_t(g_n)$ is continuous in time and therefore can be detemined by looking to a dense set of times $(t_k)_k$).

One note now that for any $t \ge 0$, the functional ℓ_t is a positive linear functional on $C_0(\mathbb{R})$ which is continuous in the uniform norm on $C_0(\mathbb{R})$ so can be extended by continuity to all functions in $C_0(\mathbb{R})$ and by a monotone class argument to all Borel positive functions. □

Thursday no lecture.

Next lecture on tuesday: we prove that $a \mapsto L_t^a$ is cadlag and that there is a formula of the form

$$
L_t^a = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t \mathbb{1}_{X_s \in (a, a+\varepsilon)} \mathbf{d}[X]_s
$$

and for *X* a martingale

-

$$
L_t^a = \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon} \int_0^t \mathbb{1}_{X_s \in (a-\varepsilon, a+\varepsilon)} d[X]_s.
$$

We continue to discuss some properties of local time of Brownian motion and reflected Brownian motion.

For Exercise Sheet 7, exercise 2, the invariant measure should be e^{-2V} and not e^{-V} .

5

-