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Brownian motion and local time

Let B be a one dimensional Brownian motion starting in 0. By Ito–Tanaka formula we have

|Bt| =�
0

t
sgn(Bs)dBs +Lt (1)

where we let Lt to be the local time in zero of B. Is not important in this case to specify which version of
the sign it is used since by the occupation time formula

��
0

⋅
1Bs=0dBs�T

=�
0

T
1Bs=0ds=�

ℝ
1x=0LT

x dx =0.

We want to show next that Rt = |Bt| is an interesting process which satisfies a reflected SDE and is called
the reflected Brownian motion, this will make link also with another process which is the maximum of the
Brownian motion

St
B ≔sup

s⩽t
Bs

St

Bt

t

Take again

Rt = |Bt|=�
0

t
sgn(Bs)dBs +Lt

and define

𝛽t ≔�
0

t
sgn−1(Bs)dBs

where we denote sgna the signum function which satisfy sgna(0)=a . Note that sgn−1 is the left derivative
of the absolute value.

Observe by Lévy characterisation that 𝛽 is a Brownian motion, indeed [𝛽]t =∫0
t sgn−1(Bs)2d[B]s =[B]t = t,

moreover

�
0

t
sgn0(Bs)d𝛽s =�

0

t
sgn0(Bs)sgn−1(Bs)dBs =�

0

t
sgn0(Bs)2dBs =Bt −�

0

t
1Bs=0dBs||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=0

=Bt

since using the local time of B I have [∫0
⋅
1Bs=0dBs]∞ =0.

The first observation out of this computation is that (B,𝛽) is a weak solution of the SDE

dBt =sgn0(Bt)d𝛽t,
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this is called Tanaka's SDE. So we have proven weak existence for this equation. This solution is unique
in law (obviously) since any solution will be such that B is a Brownian motion. However this SDE do not
have strong solutions. Indeed if (X,W) is a strong solution (starting in X0 =0), we have

dXt =sgn0(Xt)dWt,

and X is a Brownian motion, moreover

�
0

t
sgn0(Xt)dXt =�

0

t
sgn0(Xt)2dWt =Wt −�

0

t
1Xs=0dWs =Wt

since [∫0
⋅
1Xs=0dWs]T =∫0

T
1Xs=0ds=0. By Ito-Tanaka's formula

|Xt| =�
0

t
sgn−1(Xs)dXs +Lt

X,0

where Lt
X,0 is the local time of X in 0, and this shows that

Wt =�
0

t
sgn0(Xt)dXt =�

0

t
sgn−1(Xs)dXs =|Xt|−Lt

X,0

and recalling that we have (since X is a martingale)

Lt
X,0=lim

𝜀↓0

1
2𝜀�

0

t
1|Xs|<𝜀ds,

which implies that W is measurable wrt. the filtration generated by |X|. If we had a strong solution then we
would have that ℱt

X ⊆ℱt
W ⊆ℱt

|X | which is not possible because you cannot recover the sign of a Brownian
motion only knowing its absolute value.
So there are no strong solution and a consequence there is no pathwise uniqueness (by Yamada–Watanabe).

Exercise 1. Prove that if B is a Brownian motion, then we have the relation Lt
|B|,0=2Lt

B,0.

We go back to the equation

Rt = |Bt| =�
0

t
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𝛽t

+Lt

we want to show that in this equation both R,L are functions of the Brownian motion 𝛽t which we think as
given, according to the following definition

Definition 1. (Reflected SDE) The family (X, ℓ,W) is a weak solution of the one dimensional reflected SDE

dXt =dWt +dℓt

if W is a Brownian motion, ℓ a continuous positive non-decreasing process and X a continuous positive
process such that

�
0

∞
1Xs>0dℓs =0.

The solution is strong if (X, ℓ) is adapted to the noise W.

Therefore (R,L,𝛽) is a weak solution of this reflected SDE. We will need the followin analysis lemma (we
use ℝ+ =ℝ⩾0)

Lemma 2. (Skorokhod lemma) Let y∈C(ℝ+;ℝ) such that y(0)⩾0. There exists a unique pair (z,a) with
z ∈C(ℝ+;ℝ+) and a∈C(ℝ+;ℝ+) with a non-decreasing, a(0)=0, such that

a) zt =yt +at
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b) ∫0
∞
1zs>0das =0.

Moreover

a(t)= sup
s∈[0,t]

(ys)− = sup
s∈[0,t]

(−ys ∨0). (2)

at

−ys

t

zt

Proof. Exercise prove that if we let a as in eq. (2) then a),b) are satisfied, this settles the existence part. As
for uniqueness we assume that both (z,a) and (z′,a′) are two solutions of this problem. Then yt = zt −at =
zt′ − at′ so we have zt − zt′ = at − at′ so ht = zt − zt′ is of bounded variation (as a difference of two increasing
functions) and we can write (by Ito formula)

d(zt − zt′)2 =2�
0

t
(zs − zs′)d(zs − zs′)=2�

0

t
(zs − zs′)d(as −as′)=2�

0

t
(zs − zs′)das −2�

0

t
(zs − zs′)das′

=2�
0

t
(−zs′)das −2�

0

t
(zs)das′⩽0

where we used that ∫0
t zsdas=∫0

t zs′das′=0 and that zs,zs′⩾0. So ht
2⩾0 is decreasing and since h0=0 we have

that ht =0 for any t. This establish uniqueness. □

As a consequence of this lemma we have that the reflected SDE has a unique solution in law (and pathwise)
which is given therefore by

ℓt = sup
s∈[0,t]

(−Ws)+ = sup
s∈[0,t]

(−Ws)=St
−W Xt =Wt +ℓt

where we note St
W =sups⩽tWt and the solution is strong.

Definition 3. We call the process X the reflected Brownian motion

We deduce as a consequence that if we consider

Rt = |Bt| =�
0

t
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𝛽t

+Lt

then we have

Lt = sup
s∈[0,t]

(−𝛽s)+ = sup
s∈[0,t]

(−𝛽s)=St
−𝛽.

From this we deduce

Theorem 4.

Law(|B|,L)=Law(𝛽+L,L)=Law(𝛽+S−𝛽,S−𝛽)=Law(SW −W,SW)

where W here is a generic Brownian motion. This formula allows to compute the joint law of the supremum
SW of a Brownian motion W together with the Brownian motion, in terms of the law of the reflected Brow-
nian motion R.
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Remark 5. Some of the utility of this relation come from the fact that it implies that

Law(|Bt|,Lt)=Law(St
W −Wt,St

W)

and that by the reflection principle one can compute explicitly the law Law(St
W −Wt,St

W), or moreover that

Law(|B|)=Law(SW −W)

which given informations on the supremum SW in terms of the modulus of another Brownian motion.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
New chapter

1 Brownian martingale representation theorem
We concentrate now in the study of the probability space generated by a Brownian motion (maybe multidi-
mensional, taking values in ℝn). We assume in this part that (Ω,ℱ,(ℱt)t,ℙ) is the canonical n-dimensional
Wiener space, i.e. Ω = 𝒞n = C(ℝ+, ℝn), Xt(𝜔) = 𝜔(t), ℙ is the law of the Brownian motion and (ℱt)t⩾0
is the right continuous ℙ-completed filtration generated by the canonical process (Xt)t⩾0 in particular we
have ℱ∞ =ℱ=ℬ(Ω). This is called a Brownian probability space.

Theorem 6. Let Φ∈L2(Ω,ℱ,ℙ), then there exists a unique predictable process F ∈L𝒫
2 (ℝ+×Ω;ℝn) such

that

Φ(X)=𝔼[Φ(X)]+�
k=1

n

�
0

∞
Fs

(k)(X)dXs
(k).

This theorem says that any mean zero L2 random variable on (Ω, ℱ, ℙ) can be written as a stochastic
integral wrt. the Brownian motion. It will have as a consequence that any martingale on (Ω, ℱ, ℙ) is a
stochastic integral wrt. to (the given) Brownian motion and therefore it has a continuous modification. This
rules out the possibility that martingales on a Brownian probability space has jumps, “informations comes
in in a continuous way”.

Remark 7. This theorem is connected with something called “Malliavin calculus” in which the function F
represents a kind of derivative of Φ wrt. Xs. And with the fact that iterated stochastic integrals are dense in
L2(Ω,ℱ,ℙ). They play the role of orthogonal polynomials in the Hilbert space L2(Ω,ℱ,ℙ).

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Deadline for the next sheet is next friday as writted on eCampus.
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