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Brownian martingale representation theorem
We concentrate now in the study of the probability space generated by a Brownian motion (maybe multidi-
mensional, taking values in ℝd). We assume in this part that (Ω,ℱ,(ℱt)t,ℙ) is the canonical d-dimensional
Wiener space, i.e. Ω = 𝒞d = C(ℝ+, ℝd), Xt(𝜔) = 𝜔(t), ℙ is the law of the Brownian motion and (ℱt)t⩾0
is the right continuous ℙ-completed filtration generated by the canonical process (Xt)t⩾0 in particular we
have ℱ∞ =ℱ=ℬ(Ω)ℙ. This is called a Brownian probability space.

Theorem 1. Let Φ∈L2(Ω,ℱ,ℙ), then there exists a unique predictable process F ∈L𝒫
2 (ℝ+×Ω;ℝn) such

that

Φ=𝔼[Φ]+�
k=1

d

�
0

∞
Fs

(k)dXs
(k).

This theorem says that any mean zero L2 random variable on (Ω, ℱ, ℙ) can be written as a stochastic
integral wrt. the Brownian motion. It will have as a consequence that any martingale on (Ω, ℱ, ℙ) is a
stochastic integral wrt. to (the given) Brownian motion and therefore it has a continuous modification. This
rules out the possibility that martingales on a Brownian probability space has jumps, “informations comes
in in a continuous way”.

Remark 2. This theorem is connected with something called “Malliavin calculus” in which the function F
represents a kind of derivative of Φ wrt. Xs. And with the fact that iterated stochastic integrals are dense in
L2(Ω,ℱ,ℙ). They play the role of orthogonal polynomials in the Hilbert space L2(Ω,ℱ,ℙ).

We will give a “Markovian” proof. In the next exercise sheet you will be asked to give a “Gaussian” proof.

We need this technical lemma.

Lemma 3. Let p⩾1 and 𝒞⊆L∞(Ω,ℱ,ℙ) be the algebra generated by the random variables

Φ𝛼( f )≔�
0

∞
e−𝛼tf (Xt)dt

where 𝛼>0 and f ∈Cc
∞(ℝd) (smooth and compact support). Then 𝒞 is dense in Lp(Ω,ℱ,ℙ).

The interest of this algebra of functions is that it behaves nicely wrt. Markov processes. (The proof really
uses only the continuity of the trajectories of X and the fact that ℱ is the filtration generated by X.

Proof. (of Theorem 1) If F ∈ 𝒞 we can give an explicit martingale representation because conditional
expectations of elements in 𝒞 can be computed explicitly. Take for example Φa( f ), then we have by the
Markov property

𝔼[Φ𝛼( f )|ℱt]=𝔼��
0

∞
e−𝛼sf (Xs)ds�ℱt�=�

0

t
e−𝛼sf (Xs)ds+�

t

∞
e−𝛼s𝔼[ f (Xs)|ℱt]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

(Ps−tf )(Xt)

ds

=�
0

t
e−𝛼sf (Xs)ds+�

t

∞
e−𝛼s(Ps−tf )(Xt)ds

=�
0

t
e−𝛼sf (Xs)ds+e−𝛼t�

0

∞
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≔U𝛼(f )(Xt)
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where we let U𝛼f (x)≔∫0
∞ e−𝛼tPtf (x)dx for any 𝛼> 0 (the resolvent operator) and f ∈ C(ℝd) and with Pt

the transition operator for the Brownian motion:

Ptf (x)= 1
(2𝜋t)d/2�

ℝd
f (y)e−|x−y|2/t 2dy.

Recall that a generic element of 𝒞 is a finite linear combination of monomials of the form

�
i=1

n

Φ𝛼i( fi)

for some 𝛼1, . . . ,𝛼n >0 and f1, . . . , fn ∈C0
∞(ℝd). This can be written as (where Sn is the set of permutations

of n elements, and t ⩾0 is arbitrary)

�
i=1

n

Φ𝛼i( fi)= �
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sn [[[[[[[[[[[[[[�

i=1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsn

= �
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sn [[[[[[[[[[[[[[�

i=1

n

(1si⩽t +1si>t)e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsn

=�
k=0

n

�
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sn

1sk⩽t1sk+1>t[[[[[[[[[[[[[[�
i=1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsn

=�
k=0

n

�
𝜎∈Sn

�
0<s1<⋅ ⋅ ⋅<sk<t [[[[[[[[[[[[[[[[[�

i=1

k

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsk�t⩽sk+1<sn [[[[[[[[[[[[[[ �
i=k+1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]dsk+1⋅ ⋅ ⋅dsn

=�
k=0

n

�
𝜎∈Sn

Vt
𝜎,k(X)�

t⩽sk+1<sn [[[[[[[[[[[[[[ �
i=k+1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]dsk+1⋅ ⋅ ⋅dsn

where we use the convention that s0=0 and sn+1 =+∞ and where we let

Vt
𝜎,k(X)=�

0<s1<⋅ ⋅ ⋅<sk<t [[[[[[[[[[[[[[[[[�
i=1

k

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]]]]ds1⋅ ⋅ ⋅dsk.

A computation using the Markov property inductively gives

𝔼[[[[[[[[[[[[[[�
t⩽sk+1<sn [[[[[[[[[[[[[[ �

i=k+1

n

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]dsk+1⋅ ⋅ ⋅dsn|||||||||||||||ℱt]]]]]]]]]]]]]]

=𝔼[[[[[[[[[[[[[[[[[�
t⩽sk+1<sn−1 [[[[[[[[[[[[[[[[[ �

i=k+1

n−1

e−𝛼𝜎(i)sif𝜎(i)(Xsi)]]]]]]]]]]]]]]]]]e−𝛼𝜎(n)sn−1U𝛼𝜎(n)f𝜎(n)(Xsn−1)dsk+1⋅ ⋅ ⋅dsn−1|||||||||||||||||ℱt]]]]]]]]]]]]]]]]]

=e−𝛼(𝜎,k)tU𝛼(𝜎,k)( f𝜎(k+1)U𝛼(𝜎,k+1)( f𝜎(k+2)⋅ ⋅ ⋅( f𝜎(n−1)U𝛼(𝜎,n−1)( f𝜎(n)))))(Xt)

=e−𝛼(𝜎,k)tU𝛼(𝜎,k)(H𝜎,k)(Xt)

where 𝛼(𝜎, k)=𝛼𝜎(k+1) +𝛼𝜎(k+2) + ⋅ ⋅ ⋅ +𝛼𝜎(n) and

H𝜎,k(x)≔ f𝜎(k+1)(x)U𝛼(𝜎,k+1)( f𝜎(k+2)⋅ ⋅ ⋅( f𝜎(n−1)U𝛼(𝜎,n)( f𝜎(n))))(x)= f𝜎(k+1)(x)U𝛼(𝜎,k+1)(H𝜎,k+1)(x)

H𝜎,n(x)≔ f𝜎(n)(x).

We conclude that

Mt =𝔼[[[[[[[[[[[[[[�
i=1

n

Φ𝛼i( fi)|||||||||||||||ℱt]]]]]]]]]]]]]]= �
k=0

n

�
𝜎∈Sn

Vt
𝜎,k(X)e−𝛼(𝜎,k)tU𝛼(𝜎,k)(H𝜎,k)(Xt). (1)
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This formula shows that the martingale (Mt)t⩾0 is continuous in t∈ℝ since this is so for the the r.h.s. since
Vt

𝜎,k(X) is an integral and therefore continuous in t and U𝛼(𝜎,k)(H𝜎,k)(x) a smooth function of x. Note that
t ↦ Vt

𝜎,k(X)e−𝛼(𝜎,k)t is a bounded variation process. So the only contributions to the martingale Mt must
come from the processes t ↦U𝛼(𝜎,k)(H𝜎,k)(Xt). By Ito formula we have

dU𝛼(𝜎,k)(H𝜎,k)(Xt)=∇(U𝛼(𝜎,k)(H𝜎,k))(Xt)dXt +bounded variation part

we do not care about the bounded variation part since it has to cancel with the bounded variation part
coming from t↦Vt

𝜎,k(X)e−𝛼(𝜎,k)t (maybe, as an exercise, you can check it). By equating the two continuous
local martingales on the l.h.s. and r.h.s. of eq. (1) we deduce that

Mt −M0 =�
0

t
Fs ⋅ dXs

where

Fs ≔�
k=0

n

�
𝜎∈Sn

Vs
𝜎,k(X)e−𝛼(𝜎,k)s∇(U𝛼(𝜎,k)(H𝜎,k))(Xs).

By taking t →∞ this shows that (by martingale convegence theorem in L2)

�
i=1

n

Φ𝛼i( fi)=𝔼[[[[[[[[[[[[[[�
i=1

n

Φ𝛼i( fi)]]]]]]]]]]]]]]+�
0

∞
Fs ⋅ dXs

indeed note that by Ito isometry

((((((((((((((𝔼[[[[[[[[[[[[[[�
i=1

n

Φ𝛼i( fi)]]]]]]]]]]]]]]))))))))))))))
2
+𝔼���

0

∞
Fs ⋅ dXs�

2�=𝔼[[[[[[[[[[[[[[((((((((((((((�
i=1

n

Φ𝛼i( fi)))))))))))))))
2

]]]]]]]]]]]]]]<∞.

Any Φ∈𝒞 can be written as a stochastic integral wrt. Brownian motion plus a constant.
For general Φ ∈ L2(Ω, ℱ, ℙ) we can choose a sequence (Φn)n⩾1 ⊂ 𝒞 such that Φn → Φ in L2. Now let
Mt

n ≔𝔼[Φn|ℱt] and Mt =𝔼[Φ|ℱt].
By the previous step we know there exists adapted functions Fn ∈L𝒫

2 (ℝ+ ×Ω) such that

Mt
n =𝔼[Φn]+�

0

t
Fs

ndXs,

therefore by Ito isometry and n,m⩾1

𝔼[(Mt
n −Mt

m)2]=𝔼[[M n −Mm]t]=𝔼�
0

t
|Fs

n −Fs
m|ℝd

2 ds, t ⩾0.

therefore

𝔼�
0

∞
|Fs

n −Fs
m|ℝd

2 ds⩽sup
t

𝔼[(Mt
n −Mt

m)2]⩽𝔼�sup
t⩾0

(Mt
n −Mt

m)2�=on,m(1)

By martingale convergence theorem we have that Mt
n→Mt a.s. and in L2 and by Doob's maximal inequality

this convegence is uniform in t (here we need that the filtration is right-continuous). This implies also
that (Fn)n⩾1 is a Cauchy sequence in L𝒫

2 (ℝ+ × Ω) which is complete therefore there exists a unique limit
F =limnFn ∈L𝒫

2 (ℝ+ ×Ω) and from this we get that

Mt =𝔼[Φ]+�
0

t
FsdXs.

By taking t →∞ and using L2 convergence and Mt →𝔼[Φ|ℱ∞]=Φ in L2 (because ℱ∞ =ℱ) we obtain that
there exists F ∈L𝒫

2 (ℝ+ ×Ω) such that

Φ=𝔼[Φ]+�
0

∞
FsdXs.

In general there is no easy formula for F. □
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Corollary 4. All local martingales in a Brownian probability space are continuous.

Proof. Exercise. □

Applications of the martingale representation theorem

a) Mathematical finance: if you model the evolution of stock prices with the probability space gener-
ated by a multidimensional Brownian motion X then any “contract” Φ can be expressed as

Φ=𝔼[Φ]+�
0

∞
FsdXs

which means that we can replicate the contract by trading the underlying assets X using the strategy
given by F (if we are able to compute or approximate F). The strategy F (which is a vector (F1, .. . ,
Fd)) has to be interpreted as follows: Fk is the number of stocks of the asset k which one has to
acquire at the beginning of every “infinitesimal” trading round.

b) Study of the entropy H(ℚ|ℙ) of two measures ℙ,ℚ on the Brownian probability space with appli-
cation to the estimation of averages of functionals and to small noise large deviations of diffusion,
i.e. investigate the behaviour of the law 𝜇𝜀 of the solution of the SDE

dXt
𝜀=b(Xt

𝜀)dt +𝜀𝜎(Xt
𝜀)dWt

as 𝜀→0.

c) Backward SDEs (BSDE): this is a class of stochastic differential equations with final condition
(instead of initial condition). Let Φ be a given random variable which is ℱT measurable for given
T >0 (deterministic) the solution to a BSDE with driver f (t,y,z) is a pair (Y ,Z) of adapted processes
such that

−dYt = f (t,Yt,Zt)dt +ZtdWt, t ∈[0,T]

and YT = Φ, where (Wt)t⩾0 it is an adapted Brownian motion and t ↦ f (t, y, z) an adapted process.
This kind of equations has application in finance but also applications in the representations of
solutions to non-linear PDEs (very much like SDE can represent solutions to certain classes of linear
PDEs, e.g. via Feynman-Kac formula).

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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