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Stochastic differential equations
Existence, uniqueness, various notions thereof, relations between such notions.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Setting. Probability space (Ω,ℱ,ℙ), filtration (ℱt)t⩾0 right-continuous, completed.

Definition 1. A (weak) solution of the SDE in ℝn

dXt =b(Xt)dt +𝜎(Xt)dBt, t ∈[0,T]

X0 =x∈ℝn

is a pair of adapted processes (X, B) where (Bt)t⩾0 is a m-dimensional Brownian motion and
b,𝜎 are coefficients b:ℝn →ℝn, 𝜎:ℝn →ℒ(ℝm;ℝn) such that almost surely

�
0

t
|b(Xs)|ds<∞, �

0

t
Tr(𝜎(Xs)𝜎(Xs)T)ds<∞, t ∈[0,T]

and that

Xt = x+�
0

t
b(Xs)ds+�

0

t
𝜎(Xs)dBs, t ∈[0,T].

Note: a weak solution is really the data (Ω,ℱ,ℙ, (ℱt)t⩾0,X,B).

𝜎=(𝜎𝛼)𝛼=1, . . . ,m family of vector-fields 𝜎𝛼:ℝn →ℝn (this is the right point of view on manifolds)

Control theory point of view:

dXt =b(Xt)dt + �
𝛼=1

m

𝜎𝛼(Xt)dBt
𝛼.

�
𝛼=1

m

�
0

t
|𝜎𝛼(Xt)|2ds<∞.

Definition 2. A strong solution to the SDE above is a weak solution such that X is adapted to
the ℙ-completed filtration (ℱt

B)t⩾0 generated by B, ℱt
B:=𝜎(Bs: s∈[0, t])ℙ.

As a consequence

Xt ∈̂ℱt ⇒Xt(𝜔)=Φt((Bs(𝜔))s∈∈[0,t])

Φt:C([0, t];ℝm)→ℝn. While in general we could have

Xt(𝜔)=Φt((Bs(𝜔))s∈∈[0,t],N(𝜔)).

X =Ψ(B), Ψ:C([0,T];ℝm)→C([0,T];ℝn), measurable
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Definition 3. An SDE has uniqueness in law iff two solutions (Ω,ℱ,ℙ,(ℱt)t⩾0,X,B), (Ω′,ℱ′,
ℙ′, (ℱt′)t⩾0,X′,B′) are such that

Lawℙ(X)=Lawℙ′(X′)∈Π(C([0,T];ℝn),ℬ(C([0,T];ℝn)))

Definition 4. An SDE has pathwise uniqueness if for any two weak solutions X,X′ defined on
the same filt. prob. space and with the same BM B we have that they are indistinguishable, i.e.

ℙ(∃t ∈[0,T]:Xt ≠Xt′)=0.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Some examples of all the possible situations

Example 5. [No existence] The following SDE on ℝ has no weak solution

dXt =− 1
2Xt

1Xt≠0dt +dBt, X0=0. (1)

Ito formula

Xt
2=2�

0

t
XsdXs +�

0

t
ds=−�

0

t
1Xs≠0ds+2�

0

t
XsdBs+�

0

t
ds=�

0

t
1Xs=0ds+2�

0

t
XsdBs.

Since [X]t = t then the occupation time formula (which we assume for now, we will go back to
this when discussing Tanaka's formula) we have

�
0

t
1Xs=0ds=0.

Therefore (Xt
2)t is a local martingale, which is positive and such that X0

2 = 0 ⇒ Xt = 0 for all
t ∈[0,T]. But Xt =0 is not a solution to the SDE (1).

Example 6. [No strong sol, nor pathwise uniqueness, −−−

−

weak solutions, uniqueness in law]
Tanaka's SDE:

dXt =sgn(Xt)dBt, X0 =0. (2)

Example 7. [No uniqueness, −−−

−

strong]

dXt =1Xt≠0dBt, X0 =0.

The process Xt =0 is a solution but also the process Xt =Bt is a solution, indeed in this second case
we have Xt −Bt =−∫0

t
1Xs=0dBs and this process has zero quadratic variation almost surely:

[X −B]t =�
0

t
1Xs=0ds=0

by the occupation time formula since d[X]t≪dt. No pathwise-!, law-!. Assume on the probability
space there is also a Bernoulli variable 𝜉 (e.g. independent of B) assume ℱ0 ⊇𝜎(𝜉) and let

Xt(𝜔)={{{{{{{{{{{{{{{{{{{{ 0 if 𝜉(𝜔)=+1
Bt(𝜔) if 𝜉(𝜔)=0
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This solution is not strong.

Example 8. [No strong sol. and no uniq.]

dXt =1Xt≠1 sgn(Xt)dBt, X0 =0.

Here there exists weak solutions, no pathwise uniq., no strong solutions, no uniqueness in law.
Indeed the Tanaka example Y is a solution but also Zt =Yt∧𝜏 where 𝜏=inf {t ⩾0:Yt =1}.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Theorem 9. (Yamada–Watanabe) Weak existence+pathwise uniqueness ⇒ strong existence

Theorem 10. pathwise uniqueness ⇒ uniqueness in law

Theorem 11. (Cerny) Strong existence+uniquess in law ⇒ pathwise uniqueness

Theorem 12. (Cerny) Uniqueness in law implies uniqueness of the law of the weak solution (X,B)

We are going to sketch the proofs of these facts.

Weak existence is usually obtained via approximations, apriori estimates and compactness argu-
ments. Pathwise uniqueness is done by direct comparison of two solutions.

Proof. Of Theorem 10. Take two solutions (Ω,ℙ,ℱ,X,B), (Ω′,ℙ′,ℱ′,X′,B′) we know path-
wise uniqueness and we want to deduce Lawℙ(X)=Lawℙ′(X′). It would be easy if (Ω,ℱ)=(Ω′,
ℱ′) and B=B′ since then pathwise uniqueness applies and X =X′ from which follows that their
laws are the same. Let almost surely

𝜌B(𝜔)(A)=ℙ(X ∈ A|B)(𝜔), 𝜌B′(𝜔′)′ (A)=ℙ′(X′∈ A|B′)(𝜔′), A∈ℬ(𝒞n)

with 𝒞n =C(ℝ+;ℝn). Both 𝜌,𝜌′ are regular conditional probabilities, i.e. probability kernels

𝒞m →Π(𝒞n,ℬ(𝒞n)).

This is possible since 𝒞m is Polish. We can define a probabily measure ℚ on the filtered measure
space Ω̃=𝒞n ×𝒞n ×𝒞m with canonical process (Xt,Yt,Bt): Ω̃→ℝn ×ℝn ×ℝm given by

ℚ(d𝜔1d𝜔2d𝜔3)=𝜌𝜔3(d𝜔1)𝜌𝜔3′ (d𝜔2)𝜇(d𝜔3)

where 𝜇∈Π(𝒞m) is the law of the Brownian motion in ℝm. Then easy to check that

Lawℚ(X,B)=Lawℙ(X,B), Lawℚ(Y ,B)=Lawℙ′(X′,B′).

Technical point (that we will not prove here): the process (Ω̃, ℚ, X, B) is a weak solution and
(Ω̃,ℚ,Y ,B) is also a weak solution. Assuming this, by pathwise uniqueness we have that X =Y
almost surely which implies that

Lawℙ(X)=Lawℚ(X)=Lawℚ(Y)=Lawℙ′(X′)

that is uniqueness in law. □
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Proof. Of Theorem 9 (Yamada–Watanabe). We want to prove that there exists Φ:𝒞m →𝒞n such
that letting Z = Φ(B) we have that (Z , B) is a solution to the SDE. In this case we should have
that its law is given by

ℙ((Z ,B)∈(d𝜔1×d𝜔2))=𝛿Φ(𝜔2)(d𝜔1)𝜇(d𝜔2), 𝜔1∈𝒞n,𝜔2∈𝒞m

But the the previous argument give us that any two weak solutions have the same joint distribu-
tions, that is Lawℙ(X,B)=Lawℙ′(X′,B′). In this case we would have also

𝛿Φ(𝜔2) =𝜌𝜔2 =𝜌𝜔2′ , 𝜔2∈𝒞m.

But to prove this, namely that 𝜌 and 𝜌′ are 𝛿 measures we observe that pathwise uniquenes above
give us

1=ℚ(X =Y)=�
Ω̃
1𝜔1=𝜔2𝜌𝜔3(d𝜔1)𝜌𝜔3(d𝜔2)𝜇(d𝜔3),

by Fubini this implies

�
𝒞n

1𝜔1=𝜔2𝜌𝜔3(d𝜔1)=1, for 𝜌𝜔3(d𝜔2)𝜇(d𝜔3)-a.e. (𝜔2,𝜔3).

Therefore 𝜌𝜔3(d𝜔1)=𝛿𝜔2(d𝜔1) for almost every (𝜔2,𝜔3). From this is easy to deduce (exercise)
that there exists Φ such that

𝜌𝜔3(d𝜔1)=𝛿Φ(𝜔3)(d𝜔1).

Now one has to prove a technical lemma which says that the map Φ can be chosen to be adapted. □

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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