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Massimiliano Gubinelli IAM

Lecture 20 — 2020.06.30 — 12:15 via Zoom

Exam: first oral exam from 27/7-1/8. second oral exam mid september 14/9-25/9.

Boué-Dupuis formula (continued)

We assume that (Q, ¥, (%), P) is the canonical d-dimensional Wiener space, i.e. Q= €=C(R,,RY,
X:(w)=w(t), P is the law of the Browman motlon and (%;),»0 is the filtration generated by the canonical
process (X;);>o in particular we have ¥, =% = 3B(Q). We will also use the notation u for the Wiener
measure P.

Recall this lemma proven in the last lecture

Lemma 1. Let v be a probability measure which is absolutely continuous wrt. u with density Z such that
Z € G (defined last week) and Z> & for some 8 >0. Let us call $, CTI(Q) the set of all such measures.
Then under v € ¥, the canonical process X is a strong solution of the SDE

dX;=u,(X)dr+dW, t=0
where W is a v-Brownian motion and u a drift such that
lloty () = WIS Llx = ylcoqrey - X,y €Q (1
for some finite constant L. Moreover
1

H(v|p) = 5B lu(X)[f:.
Recall that H=L*R,;R9).
We go on now to reconsider a last lemma before the actual proof.
Recall that

log ule/1=sup [v(f)—H(v|p)]

Lemma 2. Let f: Q — R which is measurable and bounded from below. Assume p(e’) < co. For every £ >0
there exists v € &, such that

log ule/1<v(f)—H(v|p) +

If ,u(ef ) = +oco then there exist a sequence (v,) € %, such that

+oo =log p[e/]=sup (v, (f) —H(valp)).

n

Proof. We start by assuming that log u[e/] < co. By monotone convergence it is enough to consider only
bounded functions f and moreover such that u[e/] =1. Indeed if f is bounded below I can introduce
fu=(f An) which is now a bounded function for any n and if we prove the claim for bounded functions
then we have that for any n and £ >0 we have

log ple™ < vu(f) —H (vl p) + £ /2



for some v,. But then we observe that f, < f so

log p1[e™ < vu(f) —H (vilp) + /2.

Moreover by monotone convergence we have log ,u[ef"] - log p[ef ]. Then there exist n finite such that
log p1[e’]<log u[e”] + & /2 and in this case we are done since

log ple/1<log ple] + & /2 < va(f) —H (valpt) + €

Note also that
logy[ef“'] -v(f-c)=log ,u[ef]—v(f)

so this shows that we can take c such that log yz[e/~°] =0, namely we can assume that f is such that pu[e/] =
1. Let F=e¢/ and let v be a probability measures on Q. Note that

/
2
LR

1
x—1]+3lx

xlog(x) <|x—1| +%|x— 12, x>0,
and using this we get

HOlw -v()= (bg[ﬁ—Z(w)]—ﬂw))v(dw)

=I (log[ ] log F ( )) (dw) = (1 g[ ])v(dw)

( [F(a))dp D(F(w)dﬂ( )) (w)p(dw)

=], (log %D(%)F(w)ﬂ(dw)

where G = g—; € € since v € #,,. Using the inequality above we get

G 11G |J? 2
HWvp)-v(f) < IQ Vs 1 ) 7—1 F(o)p(dw) <IIF=Gllpiy + CAF =Gl
where the constant C; depends only on the lower bound on f. Moreover |F - Gllp1 ) < I1F = Gllz2(,,). This
proves that H(v|u) —v(f) can be made as small as we want since & is dense in LZ(,u) and we can always

find G € € such that G> & and ||ef—G||Lz(,,) <ég

If log pu[e/] = +co the above argument allows to conclude the existence of the claimed sequence by using
f» as lower bound of f. O



Now we are going to complete the proof of

Theorem 3. (Boué—Dupuis formula) For any function f: Q - R measurable and bounded from below. We
have

1
log B, [e/] = sup B, | £ (X +1(u(X)) = 5lu ()l
ueH
where the supremum on the r.h.s. is taken wrt. all the predictable functions u: R, x Q — R such that
utti= [ " uPds <o, p-as. )
and we write u(w) =u(X(w)) to stress the measurability wrt. the filtratrion ¥ generated by X and where

1w = [[u)ds, 10,
We call a function u as above, a drift (wrt. ).

Proof. We are going to prove that we have < with an arbitrarily small loss ¢ and then that we have also the
reverse inequality. Recall that we proved that if « is a drift and v is the law of X +1(u«) then we have

Hvljn) <3 Ellu(X) )

then using this measure v in the variational characterisation of log E ,l[ef ] we have

log B [e/1=sup (p(f)—H(plp)) = v(f)-H(v|p)
P

>v() =B 10O ] =, £0X+ 10 - s

so we have one of the bounds because we can now optimize over all drifts u. In order to prove the reverse
inequality we use the Lemma 2. Assume that log E ﬂ[ef ] < co. For any ¢ >0 there exists v € %, satisfying

log ]E,,[ef] —e<v(f)-Hv|p)
Now recall by Lemma 1 under v the canonical process satisfies the SDE dX =z(X)d¢+dW for a “nice” drift

z (which is Lipshitz) and a process W which is a Brownian motion under v. This SDE has a unique strong
solution, so we can write X = & (W) with some adapted functional . Therefore we concolude that

X=W+I1z(X))=W+1(u(W))
where we let u(x) =z(®(x)) for all x € Q. With this new expression we have that
v(f)=E,(f(X)=E,(f(W+1(2(X)) =B, (f(W+1(u(W)))) =E,(f (X +1(u(X))))
since Law, (W) =Law,(X). Moreover we have also (for similar reasons)
H(vlj1) = A Bollz (X0l =5 Bl (@ (W) B = S Exlu (W)l =2 B lu(X) s
Therefore putting pieces together we have
logE, [e/]-e<v(f)=Hp) =E (f(X +1(u(X)))) —%E#IIM(X)II%H'
So, for any & >0 we have found a particular drift u such that

log E[e/1< B, (/(X +1u(X)))) -3 B u(X) s + £



WhileiflogE , [e/] = +co then by the same lemma one has that there exists a sequence of drifts (u,),> such
that

+oo=log E,[e/] =sup | E,(f (X +10,(X) =3 B,y COIRs |

In both casesn putting together the two inequalities we conclude that

log By le/] =sup | E,(f (X +1 (X)) = 5B 0l |

which is our claim. O

Applications to functional analysis

This formula and similar formulas can be used (amazingly) to prove functional inequalities for finite dimen-
sional measures, see for example

e Lehec, Joseph. “Representation Formula for the Entropy and Functional Inequalities.” Annales de
U'Institut Henri Poincaré Probabilités et Statistiques 49, no. 3 (2013): 885-899.

¢ Lehec, Joseph. . “Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems.” Canadian
Mathematical Bulletin 57, no. 3 (September 1, 2014): 585-97. https://doi.org/10.4153/CMB-2013-
040-x.

o Borell, Christer. “Diffusion Equations and Geometric Inequalities.” Potential Analysis. An Interna-
tional Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry
and Functional Analysis 12, no. 1 (2000): 49-71. https://doi.org/10.1023/A:1008641618547.

e Handel, Ramon van. “The Borell-Ehrhard Game.” Probability Theory and Related Fields 170, no.
3—4 (April 2018): 555-85. https://doi.org/10.1007/s00440-017-0762-4.

We will not look into these, but they are very interesting.

Applications to probabilitistic problems

Gaussian bounds on functional of Brownian motion.

Theorem 4. Let (E,d) a metric space and f: Q — E such that there an e € E for which
d(f(x+1(h)),e)<c(x)(gx) +lhAlm), heH,
for p-almost every x € Q where ji(cg) < co and p(c?) < co. Then for all 1 >0 we have

E ,[e*UX)0] g e P+ inicr),

In particular the r.v. d(f(X),e) has Gaussian tails, i.e.
P,(d(f(X),e)>k) < Cre O
for some Cy,Cy>0.

Remark 5. Note that if we let y=x+1(h) then y(¢) =x(¢) + foth(s)ds. Note that the natural norm on y is
given by the sup norm, i.e.

() + jo' h(s)ds]

I¥lc(r0,17,R4) = sup
re[0,1]
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but on the r.h.s. of the inequality you have to control the L? norm of 4 which corresponds to the H' norm
of I(h), i.e.

d
Vallss = I () s g ey = Hal(h)

[AR,.RY)

This is coherent with the fact that increments of Brownian motion are independent so formally the Wiener
measure can be understood as given by

,u(dw)ocexp(—% N Id)(s)lzds)Dw.

Proof. By Boué-Dupuis formula and the hypothesis on f
tog B, [0 = supB, | 2d (£ (X + 1)), ) 3l |
1
<supE| 2¢(X) (g(X) + luls) ~ s |

We observe now that the polynomial 1c(X)(g(X) +1) —%tz is upperbounded by

de(X)g(X) + lc(X)t—%tz <le(X)g(X) +%/12c(X)2—%(t— Ae(X))?< Ae(X)g(X) +%,12c(x>2
N—
>0

therefore

log E , [e*/ X)) <supE | Ac(X)g(X) +%/12c(X)2] =E, [lc(X)g(X) + %AZC(X)Z

=2 p(cg) +%/12u(cz).

Exercise 1. Take

o Jx(£) =x(s)]
f(x)=sup BT

1,s€[0,1]

and prove that is satisfies the hypothesis of the previous theorem. Conclude that

]EH[CXP[1 sup <6C112+Cz/1
1,s€[0,1]

|X<t>—X<s>\]

|z—s|*

for any @ € (0,1/2) any A >0. From this you can also conclude that

2
E”[exp(p( sup |X<t>—X<s>\))

< oo
rsefo)  lf=sl®

for some p >0 small.

Thursday: we continue with applications and with large deviations.
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