
V4F1 Stochastic Analysis – SS2020
Massimiliano Gubinelli

Lecture 21 – 2020.07.2 – 12:15 via Zoom

Exam: first oral exam from 27/7-1/8. second oral exam mid september 14/9-25/9.
Will prepare a doodle form so that students can sign in.

Boué–Dupuis formula (continued)
We assume that (Ω, ℱ, (ℱt)t,ℙ) is the canonical d-dimensional Wiener space, i.e. Ω= 𝒞d =C(ℝ+, ℝd),
Xt(𝜔)=𝜔(t), ℙ is the law of the Brownian motion and (ℱt)t⩾0 is the filtration generated by the canonical
process (Xt)t⩾0 in particular we have ℱ∞ = ℱ = ℬ(Ω). We will also use the notation 𝜇 for the Wiener
measure ℙ.

Theorem 1. (Boué–Dupuis formula) For any function f :Ω→ℝ measurable and bounded from below. We
have

log𝔼𝜇[e f]= sup
u∈ℍ

𝔼𝜇� f (X + I(u(X)))− 1
2‖u(X)‖ℍ

2 �

where the supremum on the r.h.s. is taken wrt. all the predictable functions u:ℝ+ ×Ω→ℝ such that

‖u‖ℍ
2 =�

0

∞
|us|2ds<∞, 𝜇−a.s. (1)

and we write u(𝜔)=u(X(𝜔)) to stress the measurability wrt. the filtratrion ℱ generated by X and where

I(u)(t)=�
0

t
us(X)ds, t ⩾0.

We call a function u as above, a drift (wrt. 𝜇).

Large deviations of diffusion
The goal will be now to understand what happens when we have a family of SDEs in ℝd of the form

dXt
𝜀=b(Xt

𝜀)dt +𝜀1/2𝜎(Xt
𝜀)dBt, X𝜀=x0 ∈ℝd

with 𝜀 a small parameter and B a d-dimensional BM. Let's assume the coefficient b: ℝd → ℝd, 𝜎: ℝd →
ℒ(ℝd,ℝd) are nice (bounded and Lipshitz) so that we have a strong solution. We would like to understand
how the law 𝜇𝜀 of X𝜀 looks like as 𝜀→0.
Is not difficult to prove that (𝜇𝜀)𝜀 converges in law (as probability measures on 𝒞d = C(ℝ+; ℝd) with its
Borel 𝜎-field) to the Dirac mass 𝜇0 concentrated on the solution x0 of the ODE

Ẋt
0 =b(Xt

0), X0
0 =x0.

(for example proving that 𝔼[supt∈[0,T ] |Xt
𝜀−Xt

0|2 ]→0 and conclude from this).
In large deviations theory one is concerned with the speed with which 𝜇𝜀 →𝜇0, namely one would like to
quantify this convergence and usually it will happen that this convergence is exponential, in the sense that

ℙ(X𝜀 ∈ A)≈e−r(𝜀)C(A)

where r(𝜀)→∞ as 𝜀→0 nd it is usually something like 𝜀−𝛼 and C(A) is a constant which depends only on
the particular set A.

1



For example we could ask A𝛾,T ,𝛿 ={𝜔∈𝒞d: supt∈[0,T ] |𝜔(t)−𝛾(t)|<𝛿} for given 𝛾∈𝒞d, 𝛿>0 and T >0.
In this case if supt∈[0,T ] |𝜔(t)−X0(t)|>𝛿 then X0 ∈ A𝛾,T ,𝛿 and 𝜇𝜀(A𝛾,T ,𝛿)→0. We are going to prove that
what will happen is that

𝜀log𝜇𝜀(A𝛾,T ,𝛿)=𝜀logℙ(X𝜀 ∈ A𝛾,T ,𝛿)≈− inf
x∈A𝛾,T ,𝛿

I(x)

where I is a function which is only depending on b, 𝜎 and on the original problem and is called a rate
function. They are called large deviations because they happen on an exponential scale. Otherwise stated
we have an explitic asymptotic formula for the probability which looks like

𝜇𝜀(B)≈e− 1
𝜀 infx∈BI(x)

Large Deviation Theory is concerned in general in the study of such large fluctuations in a variety of con-
textes (deviations from the law of large numbers, deviations from the ergodic behaviour, deviations from
small noise behaviour like in this case, deviations from the large sample behaviour in statistics).

In order to properly speak about large deviations for the SDEs above we need some standard definitions
from large deviation theory.

Definition 2. A function I : ℰ → [0, +∞] is called a (good) rate function on a Polish space ℰ if the sets
I−1[0,M]={x ∈ℰ: I(x)⩽M}⊂ℰ are compact for all M <+∞.

In particular, a rate function is always lower semicontinuous.

Definition 3. Let I be a rate function on a Polish space ℰ and (Y 𝜀)𝜀>0 a family of random variables with
values in ℰ. The this family satisfies the Laplace principle on ℰ with rate function I (and rate 1/𝜀) if for
any function h∈Cb(ℰ) (bounded and continuous) we have

lim
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]= inf
x∈ℰ

[I(x)+h(x)]. (2)

A Laplace principle is telling us that the law 𝜇𝜀 of Y 𝜀 is behaving like e−I(x)/𝜀, in the sense that

𝔼[e−h(Y 𝜀)/𝜀]=� e−h(x)/𝜀𝜇𝜀(dx)≈� e−h(x)/𝜀e−I(x)/𝜀dx =� e−(h(x)+I(x))/𝜀dx =e− 1
𝜀 infx∈ℰ[I(x)+h(x)](1+o(1)).

Definition 4. A family (Y 𝜀)𝜀>0 satisfies the Large Deviation principle on ℰ with rate function I (and rate
1/𝜀) if for any open set A∈ℰ and closed set B∈ℰ we have

liminf
𝜀→0

𝜀logℙ(Y 𝜀 ∈ A)⩾− inf
x∈A

I(x),

limsup
𝜀→0

𝜀logℙ(Y 𝜀∈B)⩽− inf
x∈B

I(x).

Remark 5. Recall that if 𝜇𝜀→𝜇 weakly, then the Portmanteau theorem asserts that for any open set A and
closed set B you have

liminf
𝜀→0

𝜇𝜀(A)⩾𝜇(A), limsup
𝜀→0

𝜇𝜀(B)⩽𝜇(B)

while if f ∈Cb(ℰ) the of course

lim
𝜀→0

� f (x)𝜇𝜀(dx)=� f (x)𝜇(dx).

There are very strong similarities between weak convergence and large deviations.

Theorem 6. The Laplace principle is equivalent to the Large Deviation principle.
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Proof. Exercise. □

Now we are going to use the Boué–Dupuis formula to prove large deviations for a large class of problems
which in particular include the small noise diffusion problem introduced above.
Let (Y 𝜀)𝜀>0 a family of random variables defined on a Wiener space (Ω, ℱ, 𝕎, X) with 𝕎 the Wiener
measure and taking values in ℰ which are obtained from X using a family of mappings 𝒢𝜀: Ω → ℰ i.e.
Y 𝜀 =𝒢𝜀(X).
Let 𝕌M⊆L2(ℝ⩾0;ℝd) the subset of elements u∈L2(ℝ⩾0;ℝd) such that ‖u‖ℍ⩽M and let 𝒰M⊆L𝒫

2 (ℝ⩾0×Ω;
ℝd) the subset of drifts u ∈L𝒫

2 (ℝ⩾0 × Ω;ℝd) such that ‖u‖ℍ ⩽ M holds 𝜇-almost surely, i.e. u(⋅, 𝜔)∈ 𝕌M
for 𝜇 almost every 𝜔∈Ω.
Note that 𝕌M is a compact Polish space with respect to the weak topology of L2(ℝ⩾0; ℝd) (by Banach-
Alaoglu theorem).
We define J(u)(t)≔∫0

t u(s)ds for any u∈ℍ=L2(ℝ⩾0;ℝd) and then J:L2(ℝ⩾0;ℝd)→C(ℝ⩾0;ℝd)=Ω.
We will make the following assumptions on the family (𝒢𝜀)𝜀>0.

Hypothesis 7. There exists a measurable mapping 𝒢0:Ω→ℰ such that the following holds

a) for every M <∞ and any family (u𝜀)𝜀⊆𝒰M such that (u𝜀)𝜀 converges in law (as a random element
of 𝕌M, and with the weak topology of L2(ℝ⩾0;ℝd)) to u we have that

𝒢𝜀(X +𝜀−1/2J(u𝜀))→𝒢0(J(u))

in law as random variables (on (Ω,ℱ,𝕎)) with values in ℰ (of course as 𝜀→0).

b) for every M <∞ the set ΓM ≔{𝒢0(J(u)):u∈𝕌M} is a compact subset of ℰ.

For each x ∈ℰ we define

I(x)≔ 1
2 inf

u∈Γ(x)
‖u‖ℍ

2 (3)

where the infimum is take over the set Γ(x) ⊆ ℍ= L2(ℝ⩾0; ℝd) such that x = 𝒢0(J(u)) and is taken to be
+∞ if this set is empty.

Lemma 8. Under the Hypothesis 7 the function I is a rate function.

Proof. (exercise) □

Theorem 9. Under the Hypothesis 7 the family (Y 𝜀 =𝒢𝜀(X))𝜀>0 satisfies the Laplace principle with rate
function I as defined in (3) and speed 1/𝜀.

Proof. We need to show that

lim
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]= inf
x∈ℰ

[I(x)+h(x)]

holds for any h∈Cb(ℰ).
Lower bound. By Boué–Dupuis formula we have

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]=−𝜀log𝔼[e−h(𝒢𝜀(X))/𝜀]= inf
u

𝔼�h(𝒢𝜀(X +J(u)))+ 1
2‖𝜀1/2u‖ℍ

2 �

By renaming u→𝜀−1/2u we have

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]=inf
u

𝔼�h(𝒢𝜀(X +𝜀−1/2J(u)))+ 1
2‖u‖ℍ

2 �.
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Fix 𝛿>0. Then for any 𝜀>0 there exists an approximate minimiser u𝜀 such that

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩾𝔼�h(𝒢𝜀(X +𝜀−1/2J(u𝜀)))+ 1
2‖u𝜀‖ℍ

2 �−𝛿.

This implies in particular that

𝔼�1
2‖u𝜀‖ℍ

2 �⩽𝛿−𝜀log𝔼[e−h(Y 𝜀)/𝜀]+‖h‖Cb(ℰ) ⩽𝛿+2‖h‖Cb(ℰ)<∞,

and this bound is independent of 𝜀.
Moreover taking N large enough we can replace u𝜀 by the stopped process ut

𝜀,N =ut
𝜀1t⩽𝜏𝜀,N with

𝜏𝜀,N ≔inf {t ⩾0: ‖u𝜀1[0,t]‖ℍ ⩾N}.

In this case ut
𝜀,N ∈𝒰N and morever we have that

ℙ(u𝜀 ≠u𝜀,N)⩽ℙ(‖u𝜀‖ℍ >N)⩽ 𝔼[‖u𝜀‖ℍ
2 ]

N 2 ⩽ 2𝛿+4‖h‖Cb(ℰ)

N 2

uniformly in 𝜀.
□

Next tuesday I will finish this proof and give some applications, to SDEs. And then the rest of the week we
will discuss Backward SDE and representations of non-linear PDEs.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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