
V4F1 Stochastic Analysis – SS2020
Massimiliano Gubinelli

Lecture 22 – 2020.07.07 – 12:15 via Zoom

Exam: first oral exam from 27/7-1/8. second oral exam mid september 14/9-25/9.
Will prepare a doodle form so that students can sign in (today).

Large deviations (continued)
Ω=C(ℝ+;ℝd), ℱ=ℬ(Ω), X canonical process, 𝕎 Wiener measure on Ω.

Let (Y 𝜀)𝜀>0 a family of random variables defined on a Wiener space (Ω,ℱ,𝕎,X) and taking values in ℰ
which are obtained from X using a family of mappings 𝒢𝜀:Ω→ℰ i.e. Y 𝜀=𝒢𝜀(X).

Let 𝕌M⊆L2(ℝ⩾0;ℝd) the subset of elements u∈L2(ℝ⩾0;ℝd) such that ‖u‖ℍ⩽M and let 𝒰M⊆L𝒫
2 (ℝ⩾0×Ω;

ℝd) the subset of drifts u ∈L𝒫
2 (ℝ⩾0 × Ω;ℝd) such that ‖u‖ℍ ⩽ M holds 𝜇-almost surely, i.e. u(⋅, 𝜔)∈ 𝕌M

for 𝜇 almost every 𝜔∈Ω.

Note that 𝕌M is a compact Polish space with respect to the weak topology of L2(ℝ⩾0; ℝd) (by Banach-
Alaoglu theorem).

Define J(u)(t)≔∫0
t u(s)ds for any u∈ℍ=L2(ℝ⩾0;ℝd) and then J:L2(ℝ⩾0;ℝd)→C(ℝ⩾0;ℝd)=Ω.

We will make the following assumptions on the family (𝒢𝜀)𝜀>0.

Hypothesis 1. There exists a measurable mapping 𝒢0:Ω→ℰ such that the following holds

a) for every M <∞ and any family (u𝜀)𝜀⊆𝒰M such that (u𝜀)𝜀 converges in law (as a random element
of 𝕌M, and with the weak topology of L2(ℝ⩾0;ℝd)) to u we have that

𝒢𝜀(X +𝜀−1/2J(u𝜀))→𝒢0(J(u))

in law as random variables (on (Ω,ℱ,𝕎)) with values in ℰ (of course as 𝜀→0).

b) for every M <∞ the set ΓM ≔{𝒢0(J(u)):u∈𝕌M} is a compact subset of ℰ.

For each x ∈ℰ we define

I(x)≔ 1
2 inf

u∈Γ(x)
‖u‖ℍ

2 (1)

where the infimum is take over the set Γ(x) ⊆ ℍ= L2(ℝ⩾0; ℝd) such that x = 𝒢0(J(u)) and is taken to be
+∞ if this set is empty. I is a rate function (exercise).

Theorem 2. Under the Hypothesis 1 the family (Y 𝜀 =𝒢𝜀(X))𝜀>0 satisfies the Laplace principle with rate
function I as defined in (1) and speed 1/𝜀.

Proof. We need to show that

lim
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]= inf
x∈ℰ

[I(x)+h(x)]

holds for any h∈Cb(ℰ).
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Lower bound. (From last lecture) By Boué–Dupuis formula we have

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]=−𝜀log𝔼[e−h(𝒢𝜀(X))/𝜀]= inf
u

𝔼�h(𝒢𝜀(X +J(u)))+ 1
2‖𝜀1/2u‖ℍ

2 �

By renaming u→𝜀−1/2u we have

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]=inf
u

𝔼�h(𝒢𝜀(X +𝜀−1/2J(u)))+ 1
2‖u‖ℍ

2 �.

Fix 𝛿>0. Then for any 𝜀>0 there exists an approximate minimiser u𝜀 such that

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩾𝔼�h(𝒢𝜀(X +𝜀−1/2J(u𝜀)))+ 1
2‖u𝜀‖ℍ

2 �−𝛿.

This implies in particular that

𝔼�1
2‖u𝜀‖ℍ

2 �⩽𝛿−𝜀log𝔼[e−h(Y 𝜀)/𝜀]+‖h‖Cb(ℰ) ⩽𝛿+2‖h‖Cb(ℰ)<∞,

and this bound is independent of 𝜀.

Moreover taking N large enough we can replace u𝜀 by the stopped process ut
𝜀,N =ut

𝜀1t⩽𝜏𝜀,N with

𝜏𝜀,N ≔inf {t ⩾0: ‖u𝜀1[0,t]‖ℍ ⩾N}.

In this case ut
𝜀,N ∈𝒰N and morever we have that

ℙ(u𝜀 ≠u𝜀,N)⩽ℙ(‖u𝜀‖ℍ >N)⩽ 𝔼[‖u𝜀‖ℍ
2 ]

N 2 ⩽ 2𝛿+4‖h‖Cb(ℰ)

N 2

uniformly in 𝜀. This implies that we can choose N uniformly in 𝜀 so that

|𝔼[h(𝒢𝜀(X +𝜀−1/2J(u𝜀)))]−𝔼[h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))]|

⩽𝔼|h(𝒢𝜀(X +𝜀−1/2J(u𝜀)))−h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))|

⩽2‖h‖Cb(ℰ)ℙ(u𝜀 ≠u𝜀,N)=2‖h‖Cb(ℰ)
2𝛿+4‖h‖Cb(ℰ)

N 2 ⩽𝛿.

Of course we have also 𝔼�1
2 ‖u𝜀‖ℍ

2 �⩾𝔼�1
2 ‖u𝜀,N‖ℍ

2 � therefore we conclude that

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩾𝔼�h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))+ 1
2‖u𝜀,N‖ℍ

2 �−2𝛿.

Now, we have ‖u𝜀,N‖ℍ ⩽ N by construction almost surely and for any 𝜀 > 0. Therefore from any subse-
quence of (u𝜀,N)𝜀 we can extract a weakly converging subsequence (u𝜀n,N)n and let u ∈ 𝒰N be its limit.
Using Hypothesis 1 we have that 𝒢𝜀(X + 𝜀n

−1/2J(u𝜀n,N)) converges in law to 𝒢0(J(u)) and moreover by
Fatou liminfn→∞𝔼[‖u𝜀n,N‖ℍ

2 ]⩾𝔼[‖u‖ℍ
2 ] therefore (we use that h is a continuous function)

liminf
n→∞

𝔼�h(𝒢𝜀n(X +𝜀n
−1/2J(u𝜀n,N)))+ 1

2‖u𝜀n,N‖ℍ
2 �⩾𝔼�h(𝒢0(J(u)))+ 1

2‖u‖ℍ
2 �

⩾ inf
v∈ℍ

𝔼�h(𝒢0(J(v)))+ 1
2‖v‖ℍ

2 �

= inf
x∈ℰ

inf
v∈Γ(x)

𝔼�h(x)+ 1
2‖v‖ℍ

2 �= inf
x∈ℰ

�h(x)+ inf
v∈Γ(x)

𝔼�1
2‖v‖ℍ

2 �|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
I(x)

�= inf
x∈ℰ

[I(x)+h(x)].
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From this we conclude that

liminf
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩾ liminf
𝜀→0

𝔼�h(𝒢𝜀(X +𝜀−1/2J(u𝜀,N)))+ 1
2‖u𝜀,N‖ℍ

2 �−2𝛿

⩾ inf
x∈ℰ

[I(x)+h(x)]−2𝛿

because from any sequence we can extract a subsequence for which the bound works. This establish the
lower bound since now 𝛿 is arbitrary and can be taken to zero.
Upper bound. By Boué–Dupuis formula for any v∈ℍ (deterministic) we have

limsup
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]=limsup
𝜀→0

inf
u

𝔼�h(𝒢𝜀(X +𝜀−1/2J(u)))+ 1
2‖u‖ℍ

2 �

⩽limsup
𝜀→0

𝔼�h(𝒢𝜀(X +𝜀−1/2J(v)))+ 1
2‖v‖ℍ

2 �

=�limsup
𝜀→0

𝔼[h(𝒢𝜀(X +𝜀−1/2J(v)))]�+1
2‖v‖ℍ

2

By Hypothesis 𝒢𝜀(X + 𝜀−1/2J(v)) → 𝒢0(J(v)) ≔x0 in law, and v ∈ Γ(x0), therefore by optimizing over 𝜈
we have

limsup
𝜀→0

−𝜀log𝔼[e−h(Y 𝜀)/𝜀]⩽ inf
v∈ℍ

�h(𝒢0(J(v)))+ 1
2‖v‖ℍ

2 �

= inf
x∈ℰ

inf
v∈Γ(x)

�h(𝒢0(J(v)))+ 1
2‖v‖ℍ

2 �= inf
x∈ℰ

[I(x)+h(x)]

so we proved the claim. □

Example 3. We can take ℰ = Ω and Y 𝜀 = 𝒢𝜀(X) = 𝜀1/2X. In this case note that we have the following
convergence in law

𝒢𝜀(X +𝜀−1/2J(u𝜀))=𝜀1/2X +J(u𝜀)→ J(u)

therefore we can take 𝒢0(x) = x and check that we fullfill Hypothesis 1. The theorem gives as a conse-
quence that the family (𝜀1/2X)𝜀 satisfies the Laplace principle with rate function

I(x)= inf
v∈Γ(x)

1
2‖v‖ℍ

2 = inf
v∈ℍ:x=J(v)

1
2‖v‖ℍ

2 = 1
2�

0

∞
|ẋ(s)|2ds

if x ∈H1(ℝ⩾0;ℝd) (Sobolev space of functions with L2 derivative) and I(x)=+∞ otherwise. This follows
from the fact that x = J(v) means really that x(t) = ∫0

t v(s)ds for some v ∈ L2. In the formula ẋ(s) = v(s)
denotes the derivative of x.
And as consequence it satisfies also the Large Deviation principle with the same rate function. This is called
Schilder's theorem.

Theorem 4. (Schilder's theorem) Let X be a Brownian motion, then (𝜀1/2X)𝜀 satisfies the large deviation
principle on Ω with rate 1/𝜀 and rate function given by

I(x)={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
1
2∫0

∞ |ẋ(s)|2ds if x ∈H1,
+∞ otherwise.

Example 5. This means in particular that if L →∞, by Schilder's theorem (using 𝜀1/2 =1/L)

logℙ� sup
t∈[0,T ]

Xt ⩾L�=logℙ� sup
t∈[0,T ]

L−1Xt ⩾1�=logℙ(L−1X ∈ A)≈−L2 inf
x∈A

I(x)
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where A ={𝜔 ∈ Ω: supt∈[0,T ]𝜔(t) ⩾ 1} is a closed set. (here ≈ means appropriate upper and lower bounds
for the closed set A and its interior).

1

T

Now the minimizer of the variational problem

inf
x∈A

I(x)

is easily seen to be (see image left) x∗(t) = (1 ∧ (t/T))
which gives

I(x∗)= 1
2�1

T�
2
T = 1

2T .

So we conclude that LD gives us the estimate

logℙ� sup
t∈[0,T ]

Xt ⩾L�≈− L2

2T

Exercise: let f (t) be an arbitrary increasing function, try to estimate with Schilder's theorem for L →∞ the
probability

ℙ�sup
t⩾0

Xt −Lf (t)⩾0�

for example when f (t)=1+ t2.

Let's now apply our large deviation statement to small noise diffusions. Let ℰ=Ω. Assume Y 𝜀=𝒢𝜀(X) is
the strong solution to the SDE

dYt
𝜀=b(Yt

𝜀)dt +𝜀1/2dXt, t ⩾0

for a Lipshitz drift b:ℝd →ℝd and a given initial condition Y0
𝜀 =y0 ∈ℝd. We have to identify 𝒢0. Recall

that 𝒢0 is defined by having the property that we have the weak convergence

𝒢𝜀(X +𝜀−1/2J(u𝜀))→𝒢0(J(u))

as soon as u𝜀 →u (in law, see above for precise conditions). Call Zt
𝜀=𝒢𝜀(X +𝜀−1/2J(u𝜀)). Note that

𝒢𝜀(X)(t)=Yt
𝜀 =y0 +�

0

t
b(Ys

𝜀)ds+𝜀1/2Xt, t ⩾0

so we can take 𝒢𝜀:Ω→ℰ to be the unique mapping solving the integral equation

𝒢𝜀(x)=y0 +�
0

t
b(𝒢𝜀(x)(s))ds+𝜀1/2x(t).

Therefore

Zt
𝜀=𝒢𝜀(X +𝜀−1/2J(u𝜀))=y0+�

0

t
b�𝒢𝜀(X +𝜀−1/2J(u𝜀))(s)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Zs
𝜀

�ds+𝜀1/2(X(t)+𝜀−1/2J(u𝜀)(t))

=y0 +�
0

t
b(Zs

𝜀)ds+𝜀1/2X(t)+J(u𝜀)(t)
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so (Zt
𝜀)t⩾0 is the solution to the SDE wih an additional drift term given by J(u𝜀)(t). One can then easily

prove that (Z𝜀)𝜀 converges in ℰ to the solution Z0 of

Zt
0 =y0+�

0

t
b(Zs

0)ds+J(u)(t)

Therefore we define 𝒢0:Ω→ℰ to be the unique solution to

𝒢0(x)(t)=y0 +�
0

t
b(𝒢0(x)(s))ds+x(t)

in such a way that Zt
0 = 𝒢0(J(u))(t) and the Hypothesis 1 can be then easily check. We conclude that the

family of solutions (Y 𝜀)𝜀 satisfies the Large Deviation principle with rate function

I(x)= inf
v∈Γ(x)

1
2‖v‖

ℍ
2

with v∈Γ(x) iff x =𝒢0(J(u)), that is x has to be the solution to the ODE

x(t)=y0+�
0

t
b(x(s))ds+J(v)(t)

meaning that

ẋ(t)=b(x(t))+v(t)

and as a consequence there is at most one v such that v∈Γ(x) and in this case

I(x)= 1
2‖v‖

ℍ
2 = 1

2�
0

∞
|v(s)|2ds= 1

2�
0

∞
|ẋ(s)−b(x(s))|2ds

otherwise I(x)=+∞. This is the rate function for small noise diffusion.

In the general case of a nondegenerate diffusion coefficients

dYt
𝜀=b(Yt

𝜀)dt +𝜀1/2𝜎(Yt
𝜀)dXt, t ⩾0

one can prove that the LD rate function is in the form

I(x)= 1
2�

0

∞
|𝜎(x(s))−1(ẋ(s)−b(x(s)))|2ds.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Thursday I will speak about BSDE.
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	Large deviations \(continued\)

