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Lecture 22 —2020.07.07 — 12:15 via Zoom

Exam: first oral exam from 27/7-1/8. second oral exam mid september 14/9-25/9.

Will prepare a doodle form so that students can sign in (today).

Large deviations (continued)

Q=C(R,;RY), F =RB(Q), X canonical process, W Wiener measure on Q.

Let (Y?) .0 a family of random variables defined on a Wiener space (Q, ¥, W, X) and taking values in &
which are obtained from X using a family of mappings ¥°: Q - € i.e. Y*=%*(X).

Let Uy CL?(Rs0; RY) the subset of elements u € L?(R 50; RY) such that ||ul| <M and let U CLS(R5ox Q;
RY) the subset of drifts u EL%}(R>0 x Q:R9) such that ||u|g <M holds p-almost surely, i.e. u(-, w) € Uy
for y almost every w € Q.

Note that Uy, is a compact Polish space with respect to the weak topology of L*(Rso; R¢) (by Banach-
Alaoglu theorem).

Define J(u) (1) := fotu(s)ds for any u€ H = L*(Rs0; RY and then J: L2 (R50; RY) = C(Rs0; RY) = Q.

We will make the following assumptions on the family (% ?).o.

Hypothesis 1. There exists a measurable mapping G°: Q — & such that the following holds

a) forevery M < oo and any family (u?), C %y such that (u®) . converges in law (as a random element
of Uy, and with the weak topology of L*(Rso; R9)) to u we have that

GEX+e72Twf)) - G0 (w)
in law as random variables (on (Q, ¥ , W)) with values in & (of course as € - 0).

b) for every M < oo the set [y;:= (¢°Ju):ueUy)isa compact subset of €.

For each x € € we define

1 .
[(x):== inf |ullfy 1)
2u€F(x)

where the infimum is take over the set I' (x) C H = L>(Rso; R?) such that x = €°(J (1)) and is taken to be
+oco if this set is empty. [ is a rate function (exercise).

Theorem 2. Under the Hypothesis I the family (Y? =% %(X)) .o satisfies the Laplace principle with rate
function I as defined in (1) and speed 1/ €.

Proof. We need to show that
lir%— glogB[e"Y)/¢] = inf [I(x) +h(x)]
£

x€€

holds for any h € Cp(&).



Lower bound. (From last lecture) By Boué—Dupuis formula we have

—glogE[e"Y)/2] = —glogE[e "% X))/2] =n;f E[h(?”"(X+J(u))) +%||gl/2u||ﬁ]

1/2

By renaming u — £~ /“u we have

—glogE[e"Y")/2] =inf ]E[h(?”"(X+ e 2J(w))) +%Ilu|l%H].
Fix 8 > 0. Then for any ¢ >0 there exists an approximate minimiser #® such that

—glogE[e™"Y)/2] > ]E[h(‘?“‘"(x+ e~ 12J(u?))) +%I|u8||%.]1] -4.
This implies in particular that
E [%HMEH%-H] < 8- clogEle™Y)/¢] +lhlle, ) < 8 +2lhllc,e) < oo,
and this bound is independent of &.
Moreover taking N large enough we can replace u® by the stopped process u®" = uf 1;<~,, with
Ten=inf{r20:uLiolu >N}
In this case u®" € %y and morever we have that

Bllu‘lf] _ 28 +4lhlc,)

Pu®#u®N) <P (Juélg>N) < TS 7

uniformly in £. This implies that we can choose N uniformly in ¢ so that
IE[A(G (X + &~ 21 ()] - E[R(G* (X + &~ 2T @>)]|

SEh(Ge (X + e 2T (?))) —h(G 5 (X + & V2T (M)
: 28 +4|h
<2l P £ ) = 2l 0, < 5.
Of course we have also ]E[%Hu“’"ll%H] >E [%llu”"*’vnﬁ] therefore we conclude that
—elogE[e™"/%] > E[h(?fon V20w N))) 4 ANy | - 26.

Now, we have |[u®"||g <N by construction almost surely and for any ¢ > 0. Therefore from any subse-
quence of (u®N), we can extract a weakly converging subsequence (u®N), and let u € 2y be its limit.
Using Hypothesis 1 we have that & °(X + g;”zj(u”""’N)) converges in law to %0J(u)) and moreover by
Fatou liminf,,_, o E [||u®"N ||%HI] > ]E[||u||ﬁ] therefore (we use that 4 is a continuous function)

n—oo

tminf B (5 %0+ 5207 ) 4 gl | > B (500 @) + gl
> inf B[ n(9°00)) + S
veH 2

o 1,1 . ] 2])_.
~inf inf E h<x>+2nvnH]—;2; (h<x>+veng(fx)E[2||v||H = inf [1x) + h(x)]
E—

I(x)



From this we conclude that

1imi(r)1f—glogE[e-h<Y‘>/8]>1imianE hEsX + g-'/ZJ(u**N)))+%||u8»’v||ﬁ -268
£

e-0

> in; [I(x)+h(x)]-26

because from any sequence we can extract a subsequence for which the bound works. This establish the
lower bound since now & is arbitrary and can be taken to zero.

Upper bound. By Boué—Dupuis formula for any v € H (deterministic) we have

limsup — glogE[e™"Y)/¢] =limsupinf E| k(G ¢ (X + &2 (u))) +%I|u|l%ﬂ]

£-0 e->0 U4

<limsup E [h(?g(X +e7 2 (v)) + %”V”%&I]

-0

:(limsup E[h(G(X + E‘I/ZJ(V)))]) +%“V”%&I

£-0

By Hypothesis ¥ %(X + ™ 1/2J(v)) - €°(J(v)) =:x¢ in law, and v € T (x), therefore by optimizing over v
we have

limsup — glogE[e"Y)/¢] < inlgI [h(?O(J(v))) +%||V||%&I]
ve

-0

=inf inf |A(9°(J(v))) +%||v||%m] = inf [1(x) +h(x)]

xe&vel (x)

so we proved the claim. O

Example 3. We can take € =Q and Y*=9°(X) = £!2X. In this case note that we have the following
convergence in law

GEX + &1 2T (%)) = eV X + T (u8) » J(u)

therefore we can take % °(x) =x and check that we fullfill Hypothesis 1. The theorem gives as a conse-
quence that the family (!/2X), satisfies the Laplace principle with rate function

. 1 2 _ . l 2 _l R 2
I@)= inf shik= _inf =g w)Pds

if xe H'(R0; R9) (Sobolev space of functions with L2 derivative) and I (x) = +co otherwise. This follows
from the fact that x =J(v) means really that x(t) = fotv(s)ds for some ve L% In the formula x(s) = v(s)
denotes the derivative of x.

And as consequence it satisfies also the Large Deviation principle with the same rate function. This is called
Schilder's theorem.

Theorem 4. (Schilder's theorem) Let X be a Brownian motion, then (¢'/2X), satisfies the large deviation
principle on Q with rate 1/ & and rate function given by

1y 2GR ifxe !,
+o0 otherwise.

Example 5. This means in particular that if L — oo, by Schilder's theorem (using £'/2=1/L)

logP( sup X,;L):logp( sup L‘IX,>1):logP(L‘lXeA)z—inan(x)
1€[0,7] 1€[0,T] xeA



where A ={w € Q:sup;ejo,rjw (t) = 1} is a closed set. (here ~ means appropriate upper and lower bounds
for the closed set A and its interior).

Now the minimizer of the variational problem

inf I (x)

x€eA
is easily seen to be (see image left) x*(#) = (1 A (¢/T))
which gives
w112 1
I(X )—7(7) T_ﬁ

So we conclude that LD gives us the estimate

L2
logP( sup X,;L)z——T
t€[0,T]

Exercise: let f(¢) be an arbitrary increasing function, try to estimate with Schilder's theorem for L — co the
probability
P(supx,-Lfm ;0)
120

for example when f(t) =1 +12.

Let's now apply our large deviation statement to small noise diffusions. Let € = Q. Assume Y*=%*(X) is
the strong solution to the SDE

dY?=b(Y?)dr+¢'2dX,, 120

for a Lipshitz drift b: R¢— R? and a given initial condition Y =y, € R¢. We have to identify ¥°. Recall
that 9 is defined by having the property that we have the weak convergence

GHX+e 2T w)) - G0 (u)

as soon as u® - u (in law, see above for precise conditions). Call Zf=%*%(X + e~ 12J(u?)). Note that
t
TX) (=Y =yo+ [ b(¥)ds+8 X, 120
so we can take ¥ %: Q — & to be the unique mapping solving the integral equation

GE(x) =y + Iotb(?“:(x)(s))ds+ e'2x(1).
Therefore

ZE=G5(X + & 20 (uf)) =yo + fot b(?£<x+ g_'/zJ(u‘E))(s))ds+ e2(X(1) + &2 (uf) (1))

2

s

—yo+ Iotb(Zf)ds+ eV2X (1) + T (u®) (1)



80 (Zf)s0 is the solution to the SDE wih an additional drift term given by J(u?)(¢). One can then easily
prove that (Z°), converges in & to the solution 79 of

1
Z0=yo+ [ p@ds+Iw) (0
Therefore we define ¥% Q — & to be the unique solution to
0 ' (@0
G0(x) (1) = yo + fo b(FO(x) (s))ds +x(7)

in such a way that Z) = ¥°(J(u))(t) and the Hypothesis 1 can be then easily check. We conclude that the
family of solutions (Y ?) satisfies the Large Deviation principle with rate function

TP R
I(x)= ; Eurl(l;) VIl

with ve T (x) iff x=%°(J(u)), that is x has to be the solution to the ODE

x(0)=yo+ [ bx()ds+I () (1)
meaning that
X(1)=b(x(2)) +v(1)
and as a consequence there is at most one v such that ve I' (x) and in this case

1) =g =5 [ (s)Pds = [ 1é(s) = bx(s)) Pds

otherwise I (x) = +oo. This is the rate function for small noise diffusion.

In the general case of a nondegenerate diffusion coefficients
dYf=b(Y#)dt+ &0 (Y,5)dX,, 120

one can prove that the LD rate function is in the form

1(x) =%f: lo (x(s)) 7 (E(s) =b(x(s)))I*ds.

Thursday I will speak about BSDE.






	Large deviations \(continued\)

