

Lecture 22 - 2020.07.07 - 12:15 via Zoom

Exam: first oral exam from 27/7-1/8. second oral exam mid september 14/9-25/9. Will prepare a doodle form so that students can sign in (today).

Large deviations (continued)

 $\Omega = C(\mathbb{R}_+; \mathbb{R}^d), \mathcal{F} = \mathcal{B}(\Omega), X \text{ canonical process}, \mathbb{W} \text{ Wiener measure on } \Omega.$

Let $(Y^{\varepsilon})_{\varepsilon>0}$ a family of random variables defined on a Wiener space $(\Omega, \mathscr{F}, \mathbb{W}, X)$ and taking values in \mathscr{E} which are obtained from *X* using a family of mappings $\mathscr{G}^{\varepsilon}: \Omega \to \mathscr{E}$ i.e. $Y^{\varepsilon} = \mathscr{G}^{\varepsilon}(X)$.

Let $\mathbb{U}_M \subseteq L^2(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$ the subset of elements $u \in L^2(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$ such that $||u||_{\mathbb{H}} \leq M$ and let $\mathcal{U}_M \subseteq L^2_{\mathcal{P}}(\mathbb{R}_{\geq 0} \times \Omega; \mathbb{R}^d)$ the subset of drifts $u \in L^2_{\mathcal{P}}(\mathbb{R}_{\geq 0} \times \Omega; \mathbb{R}^d)$ such that $||u||_{\mathbb{H}} \leq M$ holds μ -almost surely, i.e. $u(\cdot, \omega) \in \mathbb{U}_M$ for μ almost every $\omega \in \Omega$.

Note that \mathbb{U}_M is a compact Polish space with respect to the weak topology of $L^2(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$ (by Banach-Alaoglu theorem).

Define $J(u)(t) \coloneqq \int_0^t u(s) ds$ for any $u \in \mathbb{H} = L^2(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$ and then $J: L^2(\mathbb{R}_{\geq 0}; \mathbb{R}^d) \to C(\mathbb{R}_{\geq 0}; \mathbb{R}^d) = \Omega$. We will make the following assumptions on the family $(\mathscr{G}^{\varepsilon})_{\varepsilon > 0}$.

Hypothesis 1. There exists a measurable mapping $\mathscr{G}^0: \Omega \to \mathscr{C}$ such that the following holds

a) for every $M < \infty$ and any family $(u^{\varepsilon})_{\varepsilon} \subseteq \mathcal{U}_M$ such that $(u^{\varepsilon})_{\varepsilon}$ converges in law (as a random element of \mathbb{U}_M , and with the weak topology of $L^2(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$) to u we have that

$$\mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u^{\varepsilon})) \to \mathscr{G}^{0}(J(u))$$

in law as random variables (on $(\Omega, \mathcal{F}, \mathbb{W})$) with values in \mathcal{E} (of course as $\varepsilon \to 0$).

b) for every $M < \infty$ the set $\Gamma_M := \{ \mathscr{G}^0(J(u)) : u \in \mathbb{U}_M \}$ is a compact subset of \mathscr{E} .

For each $x \in \mathcal{E}$ we define

$$I(x) \coloneqq \frac{1}{2} \inf_{u \in \Gamma(x)} \|u\|_{\mathbb{H}}^2 \tag{1}$$

where the infimum is take over the set $\Gamma(x) \subseteq \mathbb{H} = L^2(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$ such that $x = \mathcal{G}^0(J(u))$ and is taken to be $+\infty$ if this set is empty. *I* is a rate function (exercise).

Theorem 2. Under the Hypothesis 1 the family $(Y^{\varepsilon} = \mathscr{G}^{\varepsilon}(X))_{\varepsilon>0}$ satisfies the Laplace principle with rate function I as defined in (1) and speed $1/\varepsilon$.

Proof. We need to show that

$$\lim_{\varepsilon \to 0} -\varepsilon \log \mathbb{E}[e^{-h(Y^{\varepsilon})/\varepsilon}] = \inf_{x \in \mathscr{C}} [I(x) + h(x)]$$

holds for any $h \in C_b(\mathcal{E})$.

Lower bound. (From last lecture) By Boué-Dupuis formula we have

$$-\varepsilon \log \mathbb{E}[e^{-h(Y^{\varepsilon})/\varepsilon}] = -\varepsilon \log \mathbb{E}[e^{-h(\mathscr{G}^{\varepsilon}(X))/\varepsilon}] = \inf_{u} \mathbb{E}\left[h(\mathscr{G}^{\varepsilon}(X+J(u))) + \frac{1}{2}\|\varepsilon^{1/2}u\|_{\mathbb{H}}^{2}\right]$$

By renaming $u \to \varepsilon^{-1/2} u$ we have

$$-\varepsilon \log \mathbb{E}[e^{-h(Y^{\varepsilon})/\varepsilon}] = \inf_{u} \mathbb{E}\left[h(\mathcal{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u))) + \frac{1}{2}\|u\|_{\mathbb{H}}^{2}\right]$$

Fix $\delta > 0$. Then for any $\varepsilon > 0$ there exists an approximate minimiser u^{ε} such that

$$-\varepsilon \log \mathbb{E}[e^{-h(Y^{\varepsilon})/\varepsilon}] \ge \mathbb{E}\left[h(\mathscr{G}^{\varepsilon}(X+\varepsilon^{-1/2}J(u^{\varepsilon}))) + \frac{1}{2}\|u^{\varepsilon}\|_{\mathbb{H}}^{2}\right] - \delta$$

This implies in particular that

$$\mathbb{E}\left[\frac{1}{2}\|u^{\varepsilon}\|_{\mathbb{H}}^{2}\right] \leq \delta - \varepsilon \log \mathbb{E}\left[e^{-h(Y^{\varepsilon})/\varepsilon}\right] + \|h\|_{C_{b}(\mathcal{E})} \leq \delta + 2\|h\|_{C_{b}(\mathcal{E})} < \infty,$$

and this bound is independent of ε .

Moreover taking N large enough we can replace u^{ε} by the stopped process $u_t^{\varepsilon,N} = u_t^{\varepsilon} \mathbb{1}_{t \leq \tau_{\varepsilon,N}}$ with

$$\tau_{\varepsilon,N} \coloneqq \inf \{t \ge 0 \colon \| u^{\varepsilon} \mathbb{1}_{[0,t]} \|_{\mathbb{H}} \ge N \}.$$

In this case $u_t^{\varepsilon,N} \in \mathcal{U}_N$ and morever we have that

$$\mathbb{P}(u^{\varepsilon} \neq u^{\varepsilon,N}) \leq \mathbb{P}(\|u^{\varepsilon}\|_{\mathbb{H}} > N) \leq \frac{\mathbb{E}[\|u^{\varepsilon}\|_{\mathbb{H}}^{2}]}{N^{2}} \leq \frac{2\delta + 4\|h\|_{C_{b}(\mathcal{E})}}{N^{2}}$$

uniformly in ε . This implies that we can choose N uniformly in ε so that

$$\begin{split} &\|\mathbb{E}[h(\mathscr{G}^{\varepsilon}(X+\varepsilon^{-1/2}J(u^{\varepsilon})))] - \mathbb{E}[h(\mathscr{G}^{\varepsilon}(X+\varepsilon^{-1/2}J(u^{\varepsilon,N})))]\| \\ &\leqslant \mathbb{E}[h(\mathscr{G}^{\varepsilon}(X+\varepsilon^{-1/2}J(u^{\varepsilon}))) - h(\mathscr{G}^{\varepsilon}(X+\varepsilon^{-1/2}J(u^{\varepsilon,N})))] \\ &\leqslant 2\|h\|_{C_{b}(\mathscr{C})}\mathbb{P}(u^{\varepsilon} \neq u^{\varepsilon,N}) = 2\|h\|_{C_{b}(\mathscr{C})}\frac{2\delta + 4\|h\|_{C_{b}(\mathscr{C})}}{N^{2}} \leqslant \delta. \end{split}$$

Of course we have also $\mathbb{E}\left[\frac{1}{2}\|u^{\varepsilon}\|_{\mathbb{H}}^{2}\right] \ge \mathbb{E}\left[\frac{1}{2}\|u^{\varepsilon,N}\|_{\mathbb{H}}^{2}\right]$ therefore we conclude that

$$-\varepsilon \log \mathbb{E}[e^{-h(Y^{\varepsilon})/\varepsilon}] \ge \mathbb{E}\left[h(\mathscr{G}^{\varepsilon}(X+\varepsilon^{-1/2}J(u^{\varepsilon,N}))) + \frac{1}{2}\|u^{\varepsilon,N}\|_{\mathbb{H}}^{2}\right] - 2\delta.$$

Now, we have $\|u^{\varepsilon,N}\|_{\mathbb{H}} \leq N$ by construction almost surely and for any $\varepsilon > 0$. Therefore from any subsequence of $(u^{\varepsilon,N})_{\varepsilon}$ we can extract a weakly converging subsequence $(u^{\varepsilon_n,N})_n$ and let $u \in \mathcal{U}_N$ be its limit. Using Hypothesis 1 we have that $\mathscr{G}^{\varepsilon}(X + \varepsilon_n^{-1/2}J(u^{\varepsilon_n,N}))$ converges in law to $\mathscr{G}^0(J(u))$ and moreover by Fatou $\liminf_{n\to\infty} \mathbb{E}[\|u^{\varepsilon_n,N}\|_{\mathbb{H}}^2] \ge \mathbb{E}[\|u\|_{\mathbb{H}}^2]$ therefore (we use that *h* is a continuous function)

$$\begin{split} \liminf_{n \to \infty} \mathbb{E} \bigg[h(\mathscr{G}^{\varepsilon_n}(X + \varepsilon_n^{-1/2}J(u^{\varepsilon_n,N}))) + \frac{1}{2} \|u^{\varepsilon_n,N}\|_{\mathbb{H}}^2 \bigg] &\geq \mathbb{E} \bigg[h(\mathscr{G}^0(J(u))) + \frac{1}{2} \|u\|_{\mathbb{H}}^2 \bigg] \\ &\geq \inf_{v \in \mathbb{H}} \mathbb{E} \bigg[h(\mathscr{G}^0(J(v))) + \frac{1}{2} \|v\|_{\mathbb{H}}^2 \bigg] \\ &= \inf_{x \in \mathscr{C}} \inf_{v \in \Gamma(x)} \mathbb{E} \bigg[h(x) + \frac{1}{2} \|v\|_{\mathbb{H}}^2 \bigg] = \inf_{x \in \mathscr{C}} \bigg(h(x) + \underbrace{\inf_{v \in \Gamma(x)} \mathbb{E} \bigg[\frac{1}{2} \|v\|_{\mathbb{H}}^2 \bigg]}_{I(x)} \bigg) = \inf_{x \in \mathscr{C}} [I(x) + h(x)]. \end{split}$$

From this we conclude that

$$\liminf_{\varepsilon \to 0} -\varepsilon \log \mathbb{E}[e^{-h(Y^{\varepsilon})/\varepsilon}] \ge \liminf_{\varepsilon \to 0} \mathbb{E}\left[h(\mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u^{\varepsilon,N}))) + \frac{1}{2} \|u^{\varepsilon,N}\|_{\mathbb{H}}^{2}\right] - 2\delta$$
$$\ge \inf_{x \in \mathscr{C}} [I(x) + h(x)] - 2\delta$$

because from any sequence we can extract a subsequence for which the bound works. This establish the lower bound since now δ is arbitrary and can be taken to zero.

Upper bound. By Boué–Dupuis formula for any $v \in \mathbb{H}$ (deterministic) we have

$$\begin{split} \limsup_{\varepsilon \to 0} &-\varepsilon \log \mathbb{E}[e^{-h(Y^{\varepsilon})/\varepsilon}] = \limsup_{\varepsilon \to 0} \inf_{u} \mathbb{E}\left[h(\mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u))) + \frac{1}{2}\|u\|_{\mathbb{H}}^{2}\right] \\ &\leq \limsup_{\varepsilon \to 0} \mathbb{E}\left[h(\mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(v))) + \frac{1}{2}\|v\|_{\mathbb{H}}^{2}\right] \\ &= \left(\limsup_{\varepsilon \to 0} \mathbb{E}[h(\mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(v)))]\right) + \frac{1}{2}\|v\|_{\mathbb{H}}^{2} \end{split}$$

By Hypothesis $\mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(v)) \to \mathscr{G}^{0}(J(v)) =: x_{0}$ in law, and $v \in \Gamma(x_{0})$, therefore by optimizing over v we have

$$\begin{split} &\limsup_{\varepsilon \to 0} -\varepsilon \log \mathbb{E}\left[e^{-h(Y^{\varepsilon})/\varepsilon}\right] \leq \inf_{v \in \mathbb{H}} \left[h(\mathcal{G}^{0}(J(v))) + \frac{1}{2} \|v\|_{\mathbb{H}}^{2}\right] \\ &= \inf_{x \in \mathcal{C}} \inf_{v \in \Gamma(x)} \left[h(\mathcal{G}^{0}(J(v))) + \frac{1}{2} \|v\|_{\mathbb{H}}^{2}\right] = \inf_{x \in \mathcal{C}} \left[I(x) + h(x)\right] \end{split}$$

so we proved the claim.

Example 3. We can take $\mathscr{E} = \Omega$ and $Y^{\varepsilon} = \mathscr{G}^{\varepsilon}(X) = \varepsilon^{1/2}X$. In this case note that we have the following convergence in law

$$\mathcal{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u^{\varepsilon})) = \varepsilon^{1/2}X + J(u^{\varepsilon}) \to J(u)$$

therefore we can take $\mathscr{G}^0(x) = x$ and check that we fullfill Hypothesis 1. The theorem gives as a consequence that the family $(\varepsilon^{1/2}X)_{\varepsilon}$ satisfies the Laplace principle with rate function

$$I(x) = \inf_{v \in \Gamma(x)} \frac{1}{2} \|v\|_{\mathbb{H}}^2 = \inf_{v \in \mathbb{H}: x = J(v)} \frac{1}{2} \|v\|_{\mathbb{H}}^2 = \frac{1}{2} \int_0^\infty |\dot{x}(s)|^2 ds$$

if $x \in H^1(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$ (Sobolev space of functions with L^2 derivative) and $I(x) = +\infty$ otherwise. This follows from the fact that x = J(v) means really that $x(t) = \int_0^t v(s) ds$ for some $v \in L^2$. In the formula $\dot{x}(s) = v(s)$ denotes the derivative of x.

And as consequence it satisfies also the Large Deviation principle with the same rate function. This is called Schilder's theorem.

Theorem 4. (Schilder's theorem) Let X be a Brownian motion, then $(\varepsilon^{1/2}X)_{\varepsilon}$ satisfies the large deviation principle on Ω with rate $1/\varepsilon$ and rate function given by

$$I(x) = \begin{cases} \frac{1}{2} \int_0^\infty |\dot{x}(s)|^2 ds & \text{if } x \in H^1, \\ +\infty & \text{otherwise.} \end{cases}$$

Example 5. This means in particular that if $L \to \infty$, by Schilder's theorem (using $\varepsilon^{1/2} = 1/L$)

$$\log \mathbb{P}\left(\sup_{t \in [0,T]} X_t \ge L\right) = \log \mathbb{P}\left(\sup_{t \in [0,T]} L^{-1} X_t \ge 1\right) = \log \mathbb{P}\left(L^{-1} X \in A\right) \approx -L^2 \inf_{x \in A} I(x)$$

where $A = \{\omega \in \Omega: \sup_{t \in [0,T]} \omega(t) \ge 1\}$ is a closed set. (here \approx means appropriate upper and lower bounds for the closed set *A* and its interior).

Now the minimizer of the variational problem

$$\inf_{x \in A} I(x)$$

is easily seen to be (see image left) $x^*(t) = (1 \land (t/T))$ which gives

$$I(x^*) = \frac{1}{2} \left(\frac{1}{T}\right)^2 T = \frac{1}{2T}.$$

So we conclude that LD gives us the estimate

$$\log \mathbb{P}\left(\sup_{t\in[0,T]}X_t \ge L\right) \approx -\frac{L^2}{2T}$$

Exercise: let f(t) be an arbitrary increasing function, try to estimate with Schilder's theorem for $L \rightarrow \infty$ the probability

$$\mathbb{P}\left(\sup_{t\geq 0}X_t - Lf(t) \geq 0\right)$$

for example when $f(t) = 1 + t^2$.

Let's now apply our large deviation statement to small noise diffusions. Let $\mathscr{E} = \Omega$. Assume $Y^{\varepsilon} = \mathscr{G}^{\varepsilon}(X)$ is the strong solution to the SDE

$$dY_t^{\varepsilon} = b(Y_t^{\varepsilon})dt + \varepsilon^{1/2}dX_t, \qquad t \ge 0$$

for a Lipshitz drift $b: \mathbb{R}^d \to \mathbb{R}^d$ and a given initial condition $Y_0^{\varepsilon} = y_0 \in \mathbb{R}^d$. We have to identify \mathscr{G}^0 . Recall that \mathscr{G}^0 is defined by having the property that we have the weak convergence

$$\mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u^{\varepsilon})) \to \mathscr{G}^{0}(J(u))$$

as soon as $u^{\varepsilon} \to u$ (in law, see above for precise conditions). Call $Z_t^{\varepsilon} = \mathscr{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u^{\varepsilon}))$. Note that

$$\mathscr{G}^{\varepsilon}(X)(t) = Y_t^{\varepsilon} = y_0 + \int_0^t b(Y_s^{\varepsilon}) \mathrm{d}s + \varepsilon^{1/2} X_t, \quad t \ge 0$$

so we can take $\mathscr{G}^{\varepsilon}: \Omega \to \mathscr{E}$ to be the unique mapping solving the integral equation

$$\mathscr{G}^{\varepsilon}(x) = y_0 + \int_0^t b(\mathscr{G}^{\varepsilon}(x)(s)) \mathrm{d}s + \varepsilon^{1/2} x(t).$$

Therefore

$$\begin{split} Z_t^{\varepsilon} &= \mathcal{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u^{\varepsilon})) = y_0 + \int_0^t b\left(\underbrace{\mathcal{G}^{\varepsilon}(X + \varepsilon^{-1/2}J(u^{\varepsilon}))(s)}_{Z_s^{\varepsilon}}\right) \mathrm{d}s + \varepsilon^{1/2}(X(t) + \varepsilon^{-1/2}J(u^{\varepsilon})(t)) \\ &= y_0 + \int_0^t b(Z_s^{\varepsilon}) \mathrm{d}s + \varepsilon^{1/2}X(t) + J(u^{\varepsilon})(t) \end{split}$$

so $(Z_t^{\varepsilon})_{t\geq 0}$ is the solution to the SDE wih an additional drift term given by $J(u^{\varepsilon})(t)$. One can then easily prove that $(Z^{\varepsilon})_{\varepsilon}$ converges in \mathscr{E} to the solution Z^0 of

$$Z_t^0 = y_0 + \int_0^t b(Z_s^0) ds + J(u)(t)$$

Therefore we define $\mathscr{G}^0: \Omega \to \mathscr{C}$ to be the unique solution to

$$\mathcal{G}^{0}(x)(t) = y_0 + \int_0^t b(\mathcal{G}^{0}(x)(s)) ds + x(t)$$

in such a way that $Z_t^0 = \mathcal{G}^0(J(u))(t)$ and the Hypothesis 1 can be then easily check. We conclude that the family of solutions $(Y^{\varepsilon})_{\varepsilon}$ satisfies the Large Deviation principle with rate function

$$I(x) = \inf_{v \in \Gamma(x)} \frac{1}{2} \|v\|_{\mathbb{H}}^2$$

with $v \in \Gamma(x)$ iff $x = \mathcal{G}^0(J(u))$, that is *x* has to be the solution to the ODE

$$x(t) = y_0 + \int_0^t b(x(s)) ds + J(v)(t)$$

meaning that

$$\dot{x}(t) = b(x(t)) + v(t)$$

and as a consequence there is at most one *v* such that $v \in \Gamma(x)$ and in this case

$$I(x) = \frac{1}{2} ||v||_{\mathbb{H}}^2 = \frac{1}{2} \int_0^\infty |v(s)|^2 ds = \frac{1}{2} \int_0^\infty |\dot{x}(s) - b(x(s))|^2 ds$$

otherwise $I(x) = +\infty$. This is the rate function for small noise diffusion.

In the general case of a nondegenerate diffusion coefficients

$$dY_t^{\varepsilon} = b(Y_t^{\varepsilon})dt + \varepsilon^{1/2}\sigma(Y_t^{\varepsilon})dX_t, \qquad t \ge 0$$

one can prove that the LD rate function is in the form

$$I(x) = \frac{1}{2} \int_0^\infty |\sigma(x(s))^{-1}(\dot{x}(s) - b(x(s)))|^2 \mathrm{d}s.$$

Thursday I will speak about BSDE.