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Backward SDEs and non-linear PDEs
Based on the papers:

• N. Perkowski “Backward Stochastic Differential Equations: an Introduction” (lecture notes) (URL)

• N. El Karoui, S. Hamadène, and A. Matoussi. Backward stochastic differential equations and ap-
plications, volume 27, pages 267–320. Springer, 2008. (URL)

• N. El Karoui, S. Peng, and M. C. Quenez. “Backward Stochastic Differential Equations in Finance.”
Mathematical Finance 7, no. 1 (January 1997): 1–71. https://doi.org/10.1111/1467-9965.00022.

A new kind of SDEs which have numerous applications:

− Feynman–Kac like representation formulas for non-linear PDEs

− Stochastic optimal control (BSDEs give representation formula for the optimal control)

− Pricing of a large class of options in mathematical finance

Let's remind the classical Feynman–Kac formula. Consider the first order differential operator

ℒf (t, x)=�
i=1

d

b i(t,x)∇if (t,x)+ �
i, j=1

d

ai, j(t,x) ⋅∇i∇ jf (t,x)

where f ∈C1,2(ℝ+ ×ℝd;ℝ) and b:ℝ+ × ℝd →ℝd, a:ℝ+ ×ℝd → ℝd×d and b,a are sufficiently regular and
a= 1

2𝜎𝜎T for some 𝜎:ℝ+ ×ℝd →ℝd×d. We know that the solution of the linear initial value PDE problem

∂tu(t, x)=ℒu(t,x)+ f (x)u(t, x)
u(0, x)=𝜑(x) x ∈ℝd, t ⩾0

is given (under appropriate condition) by the Feynman–Kac representation formula (we give the formula
for b,𝜎 not depending on time)

u(t,x)=𝔼�𝜑(Xt
x)exp��

0

t
f (Xs

x)ds��, t ⩾0, x ∈ℝd,

where (Xt
x)t⩾0 is the solution of the SDE

dXt
x =b(Xt

x)dt +𝜎(Xt
x)dWt

with initial condition X0
x = x ∈ ℝd and W is a d-dimensional Brownian motion. For this is enough that

u∈C1,2.
What about non-linear PDEs. There are various ways to represent them using stochastic processes. Mainly
it depends on the kind of PDE we are dealing with, in particular on the form of the non-linearity. We
consider here a special kind, of the form

∂tu(t, x)+ℒu(t,x)+ f (t, x,u(t, x),∇u(t, x))=0 (1)

where ∇=Dx is the derivative with respect to the space variable (i.e. the gradient). We would like to have
a representation formula like the one above. Assume we write Ys =u(s,Xs

t,x) for s⩾ t where u is a solution
of the equation and X t,x is the diffusion process associated to ℒ which is at x ∈ ℝd at time t. What is the
dynamics of Y? By Ito formula we have (assume again that b,𝜎 do not depends on time)

dYs =(∂s +ℒ)u(s,Xs
t,x)ds+𝜎(X t,x)∇u(s,Xs

t,x)dWs
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by using the PDE (1) we have

dYs =− f (t,Xs
t,x,u(t,Xs

t,x),∇u(t,Xs
t,x))ds+𝜎(X t,x)∇u(s,Xs

t,x)dWs

Therefore if we consider a slightly less general PDE of the form

∂tu(t,x)+ℒu(t, x)+ f (t,x,u(t,x),𝜎(x)∇u(t,x))=0 (2)

It is clear that if 𝜎 is invertible then this PDE if equivalent to a PDE of the form (1), indeed we have

f (t,x,u(t,x),∇u(t,x))= f̃ (t,x,u(t,x),𝜎(x)∇u(t,x))

with f̃ (t,x, y, z)= f (t, x,y,𝜎(x)−1z). But in this case we have a nicer dynamics for Y :

dYs =− f (t,Xs
t,x,Ys,Zs)ds+ZsdWs, (3)

with Zs =𝜎(X t,x)∇u(t,Xs
t,x). We are actually going to consider the pair of adapted processes Y ,Z as a pair

of unknown in this equation. This is the first novelty (not so much, because we arleady seen something
similar for reflected equations). The interest of this formulation of the dynamics of (Y ,Z) is that it does not
depends anymore on the knowledge of u but recall that Ys =u(s,Xs

t,x).

Exercise 1. Think about the theory we are going to develop below for the equations of the kind

dYs =− f (t,Xs
t,x,Ys,Zs)ds+𝜎(X t,x)ZsdWs,

in this case one would have Zs =∇u(t,Xs
t,x) with the original formulation (1) of the PDE.

This equation cannot be solved forward in time, indeed even when f =0, in this case we have

dYs =ZsdWs,

and is clear that this equation has many solutions (just choose Z and then compute Y by giving its initial
value). However if we consider it backwards in time, things start to be interesting: i.e. assume we give a
final condition YT = 𝜉 where 𝜉 is some ℱT-measurable random variable, then the adapted process (Yt)t⩾0
has to satisfy

𝜉=YT =Yt +�
t

T
ZsdWs

that is

𝜉=Y0 +�
0

T
ZsdWs (4)

and therefore for all t ∈[0,T]

Yt =𝜉−�
t

T
ZsdWs =Y0+�

0

t
ZsdWs

with Y0∈̂ℱ0, let's assume that this is the trivial 𝜎-field. Then Y0=𝔼[𝜉] and moreover if we are on Brownian
filtration (i.e. the probability space is generated by the Brownian motion W) and 𝜉 ∈ L2, we deduce that
there must exists a predictable process Z ∈L𝒫

2 (ℝ+ ×Ω;ℝ) such that (4) is statisfied. This by the martingale
representation theorem. That the solution is unique is clear since if (Y ′, Z ′) is another solution with the
same final condition then we have

0=�
0

T
ZsdWs −�

0

T
Zs′dWs

but this is only possible if Z = Z ′ which one shows by computing the expectation of the square of this
quantity.

Solution theory for BSDEs
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In the following we consider BSDEs of the general form

−dYs = f (t,𝜔,Ys,Zs)ds−ZsdWs, YT =𝜉 (5)

where (Ω,ℱ,ℙ) is the canonical d-dimensional Wiener space, 𝜉∈L2(Ω,ℱT ,ℙ;ℝn)=L2(ℱT ;ℝn) (i.e. 𝜉
takes values in ℝn and is ℱT measurable) and Y ,Z are adapted processes taking values respectively in ℝn

and ℝn×d ≈L(ℝd,ℝn). Morever f :ℝ+ ×Ω×ℝn ×ℝn×d →ℝn (called the generator or driver) is an adapted
process, i.e. (y, z)↦ f (t,𝜔,y, z) is measurable wrt. ℱt. Standard conditions are that

f (⋅, ⋅, 0,0)∈L𝒫
2 ([0,T]×Ω;ℝn)

and there exists a constant L such that (Lipshitz condition)

| f (t,𝜔, y1, z1)− f (t,𝜔,y2, z2)|⩽L(|y1 −y2|+ |z1 − z2|), y1,y2∈ℝn, z1, z2 ∈ℝn×d

for almost every (t,𝜔).
Let us note that solutions to BSDEs are by definition only strong (because the given filtration is that of the
driving Brownian motion).
Let us introduce the notations

LT
2(V)≔L𝒫

2 ([0,T]×Ω;V).

Note that L2 in the theory of BSDEs plays a particular role because at the core of the solution theory there
is the martingale representation theorem.
Note that our driver is quite general and in applications (below) to PDEs one will take

f (t,𝜔,y, z)= f̃ (t,X t0,x(𝜔), y, z)

for example.

Theorem 1. Under these conditions the BSDE (5) has a unique solution (Y ,Z)∈LT
2(ℝn)×LT

2(ℝn×d).

Proof. The idea is to proceed via a fixpoint argument. We consider the map Φ:(Y ,Z)∈LT
2(ℝn)×LT

2(ℝn×d)↦
(Y ′, Z ′) ∈ LT

2(ℝn) × LT
2(ℝn×d) defined as follows. Fixed (Y , Z) ∈ LT

2(ℝn) × LT
2(ℝn×d) we let (Y ′, Z ′) be

the unique solution to the equation

−dYs′= f (t,𝜔,Ys,Zs)ds−Zs′dWs, YT′=𝜉 (6)

Note that the solution of this equation is explicitly given by the Brownian martingale representation the-
orem (MRT). Indeed we need to solve the integral equation

Yt′=𝜉−�
t

T
dYs′=𝜉+�

t

T
f (t,𝜔,Ys,Zs)ds−�

t

T
Zs′dWs,

but we have

Y0′=𝜉+�
0

T
f (t,𝜔,Ys,Zs)ds−�

0

T
Zs′dWs,

so Z ′ is determined by the MRT applied to the L2 random variable 𝜉+∫0
T f (t,𝜔,Ys,Zs)ds and

Y0′=𝔼�𝜉+�
0

T
f (t,𝜔,Ys,Zs)ds�.

As consequence

𝔼�𝜉+�
0

T
f (t,𝜔,Ys,Zs)ds�ℱt�=Y0′+�

0

t
Zs′dWs =Y0′+�

0

T
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t

T
Zs′dWs
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t

T
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t

T
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=Yt′

+�
0

t
f (t,𝜔,Ys,Zs)ds
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so we concldue that we have

Yt′=𝔼�𝜉+�
0

T
f (s,𝜔,Ys,Zs)ds�ℱt�−�

0

t
f (t,𝜔,Ys,Zs)ds

which gives an explicit formula for Yt′. Note that there is no formula for Z ′ (it is implicitly determined by
the MRT). This procedure defines the map Φ.
One has to prove that Φ is a contraction. In order to do this is convenient to use appropriate equivalent
norms on LT

2(ℝn)×LT
2(ℝn×d) and we replace the LT

2 norm by the norm

‖ f ‖LT ,𝛽
2

2 ≔𝔼�
0

t
e𝛽s| f (s)|2ds

for some 𝛽 ⩾ 0. And then one can show that Φ is a contraction on LT ,𝛽
2 (ℝn) × LT ,𝛽

2 (ℝn×d) for sufficiently
large 𝛽. The idea is to take (Y 1, Z1), (Y 2, Z2) ∈ LT ,𝛽

2 (ℝn) × LT ,𝛽
2 (ℝn×d) and let (Ỹ 1, Z̃1) = Φ(Y 1, Z1), (Ỹ 2,

Z̃2)=Φ(Ỹ 2, Z̃2) then one uses the Ito formula on the process t ↦ e𝛽t|Ỹt
1 − Ỹt

2|2 to get

e𝛽t|Ỹt
1− Ỹt

2|2 +�
t

T
e𝛽s|Z̃s

1 − Z̃s
2|2ds+𝛽�

t

T
e𝛽s|Ỹs

1− Ỹs
2|2ds

=MT −Mt +2�
t

T
e𝛽s⟨Ỹs

1− Ỹs
2, f (s,𝜔,Ys

1,Zs
1)− f (s,𝜔,Ys

2,Zs
2)⟩ds

where M is uniformly integrable martingale. From this and with some trivial estimates one gets the contrc-
tion property, that is for sufficienlty large 𝛽 one has

‖Φ(Y 1,Z1)−Φ(Y 2,Z2)‖LT ,𝛽
2 (ℝn)×LT ,𝛽

2 (ℝn×d) ⩽C𝛽‖(Y 1,Z1)− (Y 2,Z2)‖LT ,𝛽
2 (ℝn)×LT ,𝛽

2 (ℝn×d)

for some C𝛽∈(0, 1). Uniqueness is also an easy consequence of the contraction property of the map Φ. □

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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