
V4F1 Stochastic Analysis – SS2020
Massimiliano Gubinelli

Lecture 24 – 2020.07.14 – 12:15 via Zoom

Backward SDEs and non-linear PDEs (continued)
Recall notations from the previous lecture

ℒtf (t, x)=�
i=1

d

b i(t,x)∇if (t, x)+ �
i, j=1

d

ai, j(t,x) ⋅∇i∇ jf (t, x), t ⩾0, x ∈ℝd,

where f ∈C1,2(ℝ+ ×ℝd;ℝ) and b:ℝ+ × ℝd →ℝd, a:ℝ+ ×ℝd → ℝd×d and b,a are sufficiently regular and
a= 1

2𝜎𝜎T for some 𝜎:ℝ+ ×ℝd →ℝd×d.
We consider here a special kind of PDEs, of the form

∂tu(t,x)+ℒu(t, x)+ f (t,x,u(t,x),𝜎(t,x)∇u(t, x))=0 (1)

where ∇=Dx is the derivative with respect to the space variable (i.e. the gradient).
We argued that if (Xs

t,x)s⩾t is the solution to

dXs
t,x =b(s,Xs

t,x)ds+𝜎(s,Xs
t,x)dWs, s⩾ t, (2)

with

Xt
t,x =x ∈ℝd

and if we let Ys =u(s,Xs
t,x), Zs =𝜎(X t,x)∇u(t,Xs

t,x) for s⩾ t the the pair (Y ,Z) satisfies the BSDE:

dYs =− f (s,Xs
t,x,Ys,Zs)ds+ZsdWs. (3)

This was our motivation to look into the solution theory of a more general class of BSDEs of the form

−dYs = f (s,𝜔,Ys,Zs)ds−ZsdWs, YT =𝜉 (4)

where (Ω,ℱ,ℙ) is the canonical d-dimensional Wiener space, 𝜉∈L2(Ω,ℱT ,ℙ;ℝn)=L2(ℱT ;ℝn) (i.e. 𝜉
takes values in ℝn and is ℱT measurable) and Y ,Z are adapted processes taking values respectively in ℝn

and ℝn×d ≈L(ℝd,ℝn). Morever f :ℝ+ ×Ω×ℝn ×ℝn×d →ℝn (called the generator or driver) is an adapted
process, i.e. (y, z)↦ f (t,𝜔,y, z) is measurable wrt. ℱt. Standard conditions are that

f (⋅, ⋅, 0,0)∈L𝒫
2 ([0,T]×Ω;ℝn) (5)

and there exists a constant L such that (Lipshitz condition)

| f (t,𝜔, y1, z1)− f (t,𝜔,y2, z2)|⩽L(|y1 −y2|+ |z1 − z2|), y1,y2∈ℝn, z1, z2 ∈ℝn×d

for almost every (t,𝜔).
And proved a theorem guarateeing that under these conditions the BSDE (4) has a unique solution

(Y ,Z)∈LT
2(ℝn)×LT

2(ℝn×d).

Representation formula for non-linear PDEs.
We let (Xs

t,x)s⩾0 solving the (forward) SDE

dXs
t,x =b(s,Xs

t,x)ds+𝜎(s,Xs
t,x)dWs, s⩾ t, (6)
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for s⩾ t and such that Xs
t,x =x for s⩽ t. For given

f :ℝ+ ×ℝd ×ℝn ×ℝn×d →ℝn

and

Ψ:ℝd →ℝn,

let (Ys
t,x,Zs

t,x)s∈[0,T ] the solution of the BSDE (s∈[0,T])

−dYs
t,x = f (s,Xs

t,x,Ys
t,x,Zs

t,x)ds−Zs
t,xdWs, YT =Ψ(XT

t,x) (7)

This system of a forward SDE and a BSDE is called a (decoupled) forward-backward-SDE (FBSDE), is
decoupled because the forward process (Xs

t,x)s does not depends on (Y t,x, Z t,x) (otherwise is called fully-
coupled).
We will assume that 𝜎,b are Lipshitz and of linear growth, that f depends in a Lipschitz way on Y ,Z (like
in the general theory of the previous lecture) and moreover we have that

| f (t, x, 0, 0)|+ |Ψ(x)|⩽C(1+ |x|p),

for some p⩾1/2. In this case the generator f (t,X t,x(𝜔),y, z) satisfies the condition (5) and the final condi-
tion Ψ(XT

t,x) is in L2 because from the general theory of SDEs we can prove that solutions to (6) satisfy

sup
s∈[0,T ]

𝔼[|Xs
t,x|2p]⩽K(1+ |x|2p)

for some K >0. This can be proven easily from a combination of BDG inequality (remember these are the
Lp for the stochastic integral) and Grownwall's lemma, via the integral formulation of the SDE exploiting
the linear growth of the coefficients b,𝜎.
From these assumptions it follows that the data of the BSDE satisfy the standard assumptions (those we
introduced the last lecture) and therefore by the Theorem we proved it has a unique solution (Ys

t,x,Zs
t,x)s∈[0,T ].

Observe also that the process (Xs
t,x)s∈[0,T ] is a Markov process (exercise, it follows from the uniqueness of

solutions to the SDE) and one has for all t ⩽u

Xs
t,Xt

u,x
=Xs

t,x, u⩽ s

almost surely.
We want to prove now that we can express Ys

t,x,Zs
t,x as deterministic functions of Xs

t,x. Namely that there
exists two functions u, v such that Ys

t,x =u(s,Xs
t,x) and Zs

t,x =𝜎(s,Xs
t,x)v(s,Xs

t,x).
Introduce (ℱt,s)s⩾t to be the completed right-continuous filtration generated by (Wu −Wt)u⩾t, i.e. the future
filtration of W after time t.

Proposition 1. The solution (Ys
t,x,Zs

t,x)s∈[0,T ] is (ℱt,s)s∈[t,T ] adapted. In particular ℱt,s is ℱt,t measureable
and therefore deterministic and (Ys

t,x)s∈[0,t] is also deterministic.

Proof. Consider the new Brownian motion W̃s =Wt+s − Wt and let ℱ̃ its complected right-contrinuous fil-
tration. Let (X′,Y ′,Z ′) be the solution to the FBSDE:

dXs′=b(t + s,Xs′)ds+𝜎(t + s,Xs′)dWs′, s⩾0, X0′=x,

−dYs′= f (t + s,Xs′,Ys′,Zs′)ds−Zs′dWs, s⩾0, YT −t′ =Ψ(XT −t′ ).

By the general theory this FBSDE has a unique solution and then it is clear that Xs′=Xt+s
t,x for s∈ [0,T − t]

and similarly (Ys′,Zs′)=(Yt+s
t,x,Zt+s

t,x ) for s∈[0,T − t]. However X′,Y ′,Z ′ are adapted to (ℱ̃s)s⩾0 which means
that (Xt+s

t,x ,Yt+s
t,x, Zt+s

t,x )s⩾0 is adapted to (ℱ̃s)s⩾0 and therefore (Xs
t,x,Ys

t,x, Zs
t,x)s∈[t,T ] is adapted to (ℱt,s)s∈[s,T ]

and therefore (Xt
t,x,Yt

t,x,Zt
t,x) is deterministic.
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When t′ ⩽ t to see that (Yt ′
t,x, Zt ′

t,x) is deterministic one can just take W̃s = Wt ′+s − Wt ′ and repeat the above
argument by replacing there t with t′. Indeed the crucial remark is that Xt ′

t,x =x for any t′⩽ t. □

Proposition 2. There exists two deterministic measurable functions u,v such that Ys
t,x =u(s,Xs

t,x) and Zs
t,x =

𝜎(s,Xs
t,x)v(s,Xs

t,x)

Proof. By induction, as follows. Assume first f does not depends on y, z. Then in this case

Ys
t,x =𝔼��

s

T
f (r,Xr

t,x)dr +Ψ(XT
t,x)�ℱs�=𝔼��

s

T
f (r,Xr

t,x)dr +Ψ(XT
t,x)�Xs

t,x�=u(s,Xs
t,x)

because (Xs
t,x)s⩾0 is a Markov process and we can use the Markov property in the 2nd equality and the

3rd equality is just the statement that there exists a measurable function which represents the conditional
expectation wrt. 𝜎(Xs

t,x). Similarly one can show that Zs
t,x =𝜎(s,Xs

t,x)v(s,Xs
t,x). (See Perkowski).

In the general case we introduce an iterative procedure. Define Y (0) = Z (0) =0 then define (Y (k+1), Z (k+1))
and the solution of the BSDE with driver f (r, Xr

t,x, Y (k), Z (k)). We know from the proof of existence and
uniqueness that there exists only one fixed point for this iteration and therefore (Y (k),Z (k))→(Y t,x,Z t,x) (if
you want this is the Picard iteration to construct the solution to the BSDE). From this we deduce that there
exists functions uk,vk such that Ys

(k)=uk(s,Xs
t,x) and Zs

(k)=𝜎(s,Xs
t,x)vk(s,Xs

t,x), and the is not difficult to pass
to the limit by letting ui(s, x) ≔limsupk→∞ (uk(s, x))i (componentwise) and then ui(s, Xs

t,x) = limk→∞Ys
(k) =

Ys
t,x by convergence of the Picard iterations. Similarly one reason for the sequence Z (k) to deduce that

Zs
t,x = lim

k→∞
Zs

(k) =𝜎(s,Xs
t,x) lim

k→∞
vk(s,Xs

t,x)=𝜎(s,Xs
t,x)v(s,Xs

t,x).

This concludes the proof. □

Finally it remains to identify the functions u, v as associated to a nonlinear PDE.
We reason as follows: let u be the solution of the semilinar parabolic PDE

∂tu(t,x)+ℒtu(t,x)+ f (t, x,u(t, x),𝜎(t, x)∇u(t,x))=0, t ∈[0,T], x ∈ℝd

with final condition u(T , x)=Ψ(x).

Theorem 3. (Generalised Feynman-Kac formula for quasilinear equations) Assume that u∈C1,2([0,T]×
ℝd;ℝn) is a solution to the PDE (2) such that

|u(s, x)|+ |𝜎(s,x)∇u(s, x)|⩽C(1+ |x|k)

for some k ⩾ 1. Then if (Xs
t,x, Ys

t,x, Zs
t,x)s∈[0,T ] is the unique solution to the FBSDE with final condition Ψ

and driver f then we have

Ys
t,x =u(s,Xs

t,x), Zs
t,x =𝜎(s,Xs

t,x)∇u(s,Xs
t,x), s, t ∈[0,T], x ∈ℝd.

In particular

u(t, x)=Yt
t,x, t ∈[0,T],x ∈ℝd,

and therefore the PDE has a unique solution.

Proof. We apply Ito formula

du(s,Xs
t,x)=(∂s +ℒs)u(s,Xs

t,x)ds+𝜎(s,Xs
t,x)∇u(s,Xs

t,x)dWs

=− f (s,Xs
t,x,u(s,Xs

t,x),𝜎(s,Xs
t,x)∇u(s,Xs

t,x))ds+𝜎(s,Xs
t,x)∇u(s,Xs

t,x)dWs

which means that the pair (u(s,Xs
t,x),𝜎(s,Xs

t,x)∇u(s,Xs
t,x)) is a solution to the BSDE, the final condition is

ok since u(T ,XT
t,x)= Ψ(XT

t,x) and by uniqueness we have (u(s, Xs
t,x),𝜎(s, Xs

t,x)∇u(s, Xs
t,x)) =(Ys

t,x,Zs
t,x) for

all s∈[0,T]. □
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Remark 4. With stronger conditions on the coefficients of the PDE one can prove directly that given
a solution to the BSDE which then, as we have seen can always be represented as Ys

t,x = u(s, Xs
t,x) and

Zs
t,x = 𝜎(s, Xs

t,x)v(s, Xs
t,x) for some functions u, v, then one necessarily have that u ∈ C1,2 and v = ∇u and u

solves the PDE. (see the notes of Perkowski for some literature on this).

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
(the following is not in the exam)

Rough path theory
Rough path theory is a way to make sense of SDEs without using stochastic integrals.

Imagine you want to give an “analytic” meaning to the equation (let's ignore the drift b)

dXt =𝜎(Xt)dWt, X0=x,

where W is a Brownian motion or possibly a similar process which is nowhere differentiable and maybe not
even a semimartingale.
Recall that stochastic integrals are only defined almost surely (or a limit in probability).

• Extend SDE theory beyond the semimartingale setting

• Have a robust theory of SDEs (meaning that I can reliably approximate a stochastic integral)

• Prove Wong-Zakai type theorems, i.e. let W 𝜀→W (as 𝜀→0) to be smooth approximations of Brow-
nian motion and let X𝜀 be the solution of the ODE

∂tXt
𝜀=𝜎(Xt)∂tWt

𝜀, X0 =x.

Then we want to prove that X𝜀 →X where X solve the SDE above. In general this is false!!.

For example Wong-Zakai ('70) proved that if

Wt
𝜀 =� 𝜀−1𝜌((t − s)/𝜀)Wsds

where 𝜌:ℝ→ℝ+, smooth and with integral one. Then Wt
𝜀→Wt as 𝜀→0 for all t almost surely (and actually

almost sure convergence takes place in any Hölder space with index less that 1/2), but nonetheless one as
that X𝜀 →Y where Y is the process which solves the SDE

dYt
i= �

𝛼=1

n

𝜎𝛼
i (Yt)dWt

𝛼 + 1
2C𝜌�

𝛼=1

n

�
j=1

d

𝜎𝛼
j(Yt)∇ j𝜎𝛼

i (Yt)dt, t ⩾0, i =1, . . . ,d

where here I'm assuming that W takes values in ℝn and Y in ℝd and 𝜎𝛼:ℝd →ℝd for 𝛼=1, . . . ,n smooth.
The constant C𝜌 depends on 𝜌.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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