Lecture 24 – 2020.07.14 – 12:15 via Zoom

Backward SDEs and non-linear PDEs (continued)

Recall notations from the previous lecture

$$\mathcal{L}_t f(t,x) = \sum_{i=1}^d b^i(t,x) \nabla^i f(t,x) + \sum_{i,j=1}^d a^{i,j}(t,x) \cdot \nabla^i \nabla^j f(t,x), \qquad t \geq 0, x \in \mathbb{R}^d,$$

where $f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d; \mathbb{R})$ and $b: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$, $a: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$ and b, a are sufficiently regular and $a = \frac{1}{2}\sigma\sigma^T$ for some $\sigma: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$.

We consider here a special kind of PDEs, of the form

$$\partial_t u(t,x) + \mathcal{L}u(t,x) + f(t,x,u(t,x),\sigma(t,x))\nabla u(t,x) = 0$$
 (1)

where $\nabla = D_x$ is the derivative with respect to the space variable (i.e. the gradient).

We argued that if $(X_s^{t,x})_{s \ge t}$ is the solution to

$$dX_s^{t,x} = b(s, X_s^{t,x})ds + \sigma(s, X_s^{t,x})dW_s, \qquad s \geqslant t,$$
(2)

with

$$X_t^{t,x} = x \in \mathbb{R}^d$$

and if we let $Y_s = u(s, X_s^{t,x})$, $Z_s = \sigma(X^{t,x}) \nabla u(t, X_s^{t,x})$ for $s \ge t$ the the pair (Y, Z) satisfies the BSDE:

$$dY_{s} = -f(s, X_{s}^{t,x}, Y_{s}, Z_{s})ds + Z_{s}dW_{s}.$$
(3)

This was our motivation to look into the solution theory of a more general class of BSDEs of the form

$$-dY_s = f(s, \omega, Y_s, Z_s)ds - Z_s dW_s, \qquad Y_T = \xi$$
(4)

where $(\Omega, \mathcal{F}, \mathbb{P})$ is the canonical d-dimensional Wiener space, $\xi \in L^2(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R}^n) = L^2(\mathcal{F}_T; \mathbb{R}^n)$ (i.e. ξ takes values in \mathbb{R}^n and is \mathcal{F}_T measurable) and Y, Z are adapted processes taking values respectively in \mathbb{R}^n and $\mathbb{R}^{n \times d} \approx L(\mathbb{R}^d, \mathbb{R}^n)$. Morever $f: \mathbb{R}_+ \times \Omega \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \to \mathbb{R}^n$ (called the *generator* or *driver*) is an adapted process, i.e. $(y,z) \mapsto f(t,\omega,y,z)$ is measurable wrt. \mathcal{F}_t . Standard conditions are that

$$f(\cdot,\cdot,0,0) \in L^2_{\mathcal{P}}([0,T] \times \Omega; \mathbb{R}^n)$$
(5)

and there exists a constant L such that (Lipshitz condition)

$$|f(t,\omega,y_1,z_1)-f(t,\omega,y_2,z_2)| \le L(|y_1-y_2|+|z_1-z_2|), \quad y_1,y_2 \in \mathbb{R}^n, z_1,z_2 \in \mathbb{R}^{n\times d}$$

for almost every (t, ω) .

And proved a theorem guarateeing that under these conditions the BSDE (4) has a unique solution

$$(Y,Z) \in L_T^2(\mathbb{R}^n) \times L_T^2(\mathbb{R}^{n \times d}).$$

Representation formula for non-linear PDEs.

We let $(X_s^{t,x})_{s\geq 0}$ solving the (forward) SDE

$$dX_s^{t,x} = b(s, X_s^{t,x})ds + \sigma(s, X_s^{t,x})dW_s, \qquad s \geqslant t,$$
(6)

for $s \ge t$ and such that $X_s^{t,x} = x$ for $s \le t$. For given

$$f: \mathbb{R}_{\perp} \times \mathbb{R}^d \times \mathbb{R}^n \times \mathbb{R}^{n \times d} \to \mathbb{R}^n$$

and

$$\Psi: \mathbb{R}^d \to \mathbb{R}^n$$
,

let $(Y_s^{t,x}, Z_s^{t,x})_{s \in [0,T]}$ the solution of the BSDE $(s \in [0,T])$

$$-dY_{s}^{t,x} = f(s, X_{s}^{t,x}, Y_{s}^{t,x}, Z_{s}^{t,x})ds - Z_{s}^{t,x}dW_{s}, \qquad Y_{T} = \Psi(X_{T}^{t,x})$$
(7)

This system of a forward SDE and a BSDE is called a (decoupled) forward-backward-SDE (FBSDE), is decoupled because the forward process $(X_s^{t,x})_s$ does not depend on $(Y^{t,x}, Z^{t,x})$ (otherwise is called fully-coupled).

We will assume that σ , b are Lipshitz and of linear growth, that f depends in a Lipschitz way on Y, Z (like in the general theory of the previous lecture) and moreover we have that

$$|f(t,x,0,0)| + |\Psi(x)| \le C(1+|x|^p),$$

for some $p \ge 1/2$. In this case the generator $f(t, X^{t,x}(\omega), y, z)$ satisfies the condition (5) and the final condition $\Psi(X_T^{t,x})$ is in L^2 because from the general theory of SDEs we can prove that solutions to (6) satisfy

$$\sup_{s \in [0,T]} \mathbb{E}[|X_s^{t,x}|^{2p}] \leq K(1+|x|^{2p})$$

for some K > 0. This can be proven easily from a combination of BDG inequality (remember these are the L^p for the stochastic integral) and Grownwall's lemma, via the integral formulation of the SDE exploiting the linear growth of the coefficients b, σ .

From these assumptions it follows that the data of the BSDE satisfy the standard assumptions (those we introduced the last lecture) and therefore by the Theorem we proved it has a unique solution $(Y_s^{t,x}, Z_s^{t,x})_{s \in [0,T]}$.

Observe also that the process $(X_s^{t,x})_{s \in [0,T]}$ is a Markov process (exercise, it follows from the uniqueness of solutions to the SDE) and one has for all $t \le u$

$$X_s^{t,X_t^{u,x}} = X_s^{t,x}, \qquad u \leqslant s$$

almost surely.

We want to prove now that we can express $Y_s^{t,x}, Z_s^{t,x}$ as deterministic functions of $X_s^{t,x}$. Namely that there exists two functions u, v such that $Y_s^{t,x} = u(s, X_s^{t,x})$ and $Z_s^{t,x} = \sigma(s, X_s^{t,x})v(s, X_s^{t,x})$.

Introduce $(\mathscr{F}_{t,s})_{s\geqslant t}$ to be the completed right-continuous filtration generated by $(W_u-W_t)_{u\geqslant t}$, i.e. the future filtration of W after time t.

Proposition 1. The solution $(Y_s^{t,x}, Z_s^{t,x})_{s \in [0,T]}$ is $(\mathscr{F}_{t,s})_{s \in [t,T]}$ adapted. In particular $\mathscr{F}_{t,s}$ is $\mathscr{F}_{t,t}$ measureable and therefore deterministic and $(Y_s^{t,x})_{s \in [0,t]}$ is also deterministic.

Proof. Consider the new Brownian motion $\tilde{W}_s = W_{t+s} - W_t$ and let $\tilde{\mathscr{F}}$ its complected right-contrinuous filtration. Let (X', Y', Z') be the solution to the FBSDE:

$$dX'_s = b(t+s,X'_s)ds + \sigma(t+s,X'_s)dW'_s, \qquad s \geqslant 0, \qquad X'_0 = x,$$

$$-dY'_{s} = f(t+s, X'_{s}, Y'_{s}, Z'_{s})ds - Z'_{s}dW_{s}, \quad s \ge 0, \quad Y'_{T-t} = \Psi(X'_{T-t}).$$

By the general theory this FBSDE has a unique solution and then it is clear that $X_s' = X_{t+s}^{t,x}$ for $s \in [0, T-t]$ and similarly $(Y_s', Z_s') = (Y_{t+s}^{t,x}, Z_{t+s}^{t,x})$ for $s \in [0, T-t]$. However X', Y', Z' are adapted to $(\widetilde{\mathscr{F}}_s)_{s\geqslant 0}$ which means that $(X_{t+s}^{t,x}, Y_{t+s}^{t,x}, Z_{t+s}^{t,x})_{s\geqslant 0}$ is adapted to $(\widetilde{\mathscr{F}}_s)_{s\geqslant 0}$ and therefore $(X_s^{t,x}, Y_s^{t,x}, Z_s^{t,x})_{s\in [t,T]}$ is adapted to $(\mathscr{F}_{t,s})_{s\in [s,T]}$ and therefore $(X_t^{t,x}, Y_t^{t,x}, Z_t^{t,x})$ is deterministic.

When $t' \le t$ to see that $(Y_{t'}^{t,x}, Z_{t'}^{t,x})$ is deterministic one can just take $\tilde{W}_s = W_{t'+s} - W_{t'}$ and repeat the above argument by replacing there t with t'. Indeed the crucial remark is that $X_{t'}^{t,x} = x$ for any $t' \le t$.

Proposition 2. There exists two deterministic measurable functions u, v such that $Y_s^{t,x} = u(s, X_s^{t,x})$ and $Z_s^{t,x} = \sigma(s, X_s^{t,x}) v(s, X_s^{t,x})$

Proof. By induction, as follows. Assume first f does not depend on y, z. Then in this case

$$Y_s^{t,x} = \mathbb{E}\left[\int_s^T f(r, X_r^{t,x}) dr + \Psi(X_T^{t,x}) \middle| \mathcal{F}_s \right] = \mathbb{E}\left[\int_s^T f(r, X_r^{t,x}) dr + \Psi(X_T^{t,x}) \middle| X_s^{t,x} \right] = u(s, X_s^{t,x})$$

because $(X_s^{t,x})_{s\geqslant 0}$ is a Markov process and we can use the Markov property in the 2nd equality and the 3rd equality is just the statement that there exists a measurable function which represents the conditional expectation wrt. $\sigma(X_s^{t,x})$. Similarly one can show that $Z_s^{t,x} = \sigma(s,X_s^{t,x})v(s,X_s^{t,x})$. (See Perkowski).

In the general case we introduce an iterative procedure. Define $Y^{(0)} = Z^{(0)} = 0$ then define $(Y^{(k+1)}, Z^{(k+1)})$ and the solution of the BSDE with driver $f(r, X_r^{t,x}, Y^{(k)}, Z^{(k)})$. We know from the proof of existence and uniqueness that there exists only one fixed point for this iteration and therefore $(Y^{(k)}, Z^{(k)}) \to (Y^{t,x}, Z^{t,x})$ (if you want this is the Picard iteration to construct the solution to the BSDE). From this we deduce that there exists functions u_k, v_k such that $Y_s^{(k)} = u_k(s, X_s^{t,x})$ and $Z_s^{(k)} = \sigma(s, X_s^{t,x})v_k(s, X_s^{t,x})$, and the is not difficult to pass to the limit by letting $u^i(s,x) \coloneqq \limsup_{k \to \infty} (u_k(s,x))^i$ (componentwise) and then $u^i(s, X_s^{t,x}) = \lim_{k \to \infty} Y_s^{(k)} = Y_s^{t,x}$ by convergence of the Picard iterations. Similarly one reason for the sequence $Z^{(k)}$ to deduce that

$$Z_s^{t,x} = \lim_{k \to \infty} Z_s^{(k)} = \sigma\left(s, X_s^{t,x}\right) \lim_{k \to \infty} v_k(s, X_s^{t,x}) = \sigma\left(s, X_s^{t,x}\right) v(s, X_s^{t,x}).$$

This concludes the proof.

Finally it remains to identify the functions u, v as associated to a nonlinear PDE.

We reason as follows: let u be the solution of the semilinar parabolic PDE

$$\partial_t u(t,x) + \mathcal{L}_t u(t,x) + f(t,x,u(t,x),\sigma(t,x)\nabla u(t,x)) = 0, \quad t \in [0,T], x \in \mathbb{R}^d$$

with *final* condition $u(T, x) = \Psi(x)$.

Theorem 3. (Generalised Feynman-Kac formula for quasilinear equations) Assume that $u \in C^{1,2}([0,T] \times \mathbb{R}^d; \mathbb{R}^n)$ is a solution to the PDE (2) such that

$$|u(s,x)| + |\sigma(s,x)\nabla u(s,x)| \le C(1+|x|^k)$$

for some $k \ge 1$. Then if $(X_s^{t,x}, Y_s^{t,x}, Z_s^{t,x})_{s \in [0,T]}$ is the unique solution to the FBSDE with final condition Ψ and driver f then we have

$$Y_s^{t,x} = u(s, X_s^{t,x}), \quad Z_s^{t,x} = \sigma(s, X_s^{t,x}) \nabla u(s, X_s^{t,x}), \quad s, t \in [0, T], x \in \mathbb{R}^d.$$

In particular

$$u(t,x) = Y_t^{t,x}, \qquad t \in [0,T], x \in \mathbb{R}^d,$$

and therefore the PDE has a unique solution.

Proof. We apply Ito formula

$$du(s, X_s^{t,x}) = (\partial_s + \mathcal{L}_s)u(s, X_s^{t,x})ds + \sigma(s, X_s^{t,x})\nabla u(s, X_s^{t,x})dW_s$$

$$= -f(s, X_s^{t,x}, u(s, X_s^{t,x}), \sigma(s, X_s^{t,x})\nabla u(s, X_s^{t,x}))ds + \sigma(s, X_s^{t,x})\nabla u(s, X_s^{t,x})dW_s$$

which means that the pair $(u(s, X_s^{t,x}), \sigma(s, X_s^{t,x}) \nabla u(s, X_s^{t,x}))$ is a solution to the BSDE, the final condition is ok since $u(T, X_T^{t,x}) = \Psi(X_T^{t,x})$ and by uniqueness we have $(u(s, X_s^{t,x}), \sigma(s, X_s^{t,x}) \nabla u(s, X_s^{t,x})) = (Y_s^{t,x}, Z_s^{t,x})$ for all $s \in [0, T]$.

Remark 4. With stronger conditions on the coefficients of the PDE one can prove directly that given a solution to the BSDE which then, as we have seen can always be represented as $Y_s^{t,x} = u(s, X_s^{t,x})$ and $Z_s^{t,x} = \sigma(s, X_s^{t,x})v(s, X_s^{t,x})$ for *some* functions u, v, then one necessarily have that $u \in C^{1,2}$ and $v = \nabla u$ and u solves the PDE. (see the notes of Perkowski for some literature on this).

(the following is not in the exam)

Rough path theory

Rough path theory is a way to make sense of SDEs without using stochastic integrals.

Imagine you want to give an "analytic" meaning to the equation (let's ignore the drift b)

$$dX_t = \sigma(X_t) dW_t, \qquad X_0 = x,$$

where *W* is a Brownian motion or possibly a similar process which is nowhere differentiable and maybe not even a semimartingale.

Recall that stochastic integrals are only defined almost surely (or a limit in probability).

- Extend SDE theory beyond the semimartingale setting
- Have a robust theory of SDEs (meaning that I can reliably approximate a stochastic integral)
- Prove Wong-Zakai type theorems, i.e. let $W^{\varepsilon} \to W$ (as $\varepsilon \to 0$) to be smooth approximations of Brownian motion and let X^{ε} be the solution of the ODE

$$\partial_t X_t^{\varepsilon} = \sigma(X_t) \partial_t W_t^{\varepsilon}, \qquad X_0 = x.$$

Then we want to prove that $X^{\varepsilon} \to X$ where X solve the SDE above. In general this is false!!.

For example Wong-Zakai ('70) proved that if

$$W_t^{\varepsilon} = \int \varepsilon^{-1} \rho \left((t - s) / \varepsilon \right) W_s \mathrm{d}s$$

where $\rho: \mathbb{R} \to \mathbb{R}_+$, smooth and with integral one. Then $W_t^{\varepsilon} \to W_t$ as $\varepsilon \to 0$ for all t almost surely (and actually almost sure convergence takes place in any Hölder space with index less that 1/2), but nonetheless one as that $X^{\varepsilon} \to Y$ where Y is the process which solves the SDE

$$dY_t^i = \sum_{\alpha=1}^n \sigma_\alpha^i(Y_t) dW_t^\alpha + \frac{1}{2} C_\rho \sum_{\alpha=1}^n \sum_{j=1}^d \sigma_\alpha^j(Y_t) \nabla^j \sigma_\alpha^i(Y_t) dt, \qquad t \ge 0, i = 1, \dots, d$$

where here I'm assuming that W takes values in \mathbb{R}^n and Y in \mathbb{R}^d and $\sigma_\alpha : \mathbb{R}^d \to \mathbb{R}^d$ for $\alpha = 1, ..., n$ smooth. The constant C_ρ depends on ρ .