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A brief introduction to rough path theory

(not part of exam)
To know more about it:

Peter K. Friz and Martin Hairer. A Course on Rough Paths: With an Introduction to Regularity Structures.
Springer, 2014.

Roughly: Rough path theory is a way to make sense of SDEs without using stochastic integrals. (but not
only)

Motivation 1. Understanding the Wong—Zakai theorem ('70).
SDE in R with n-dimensional Brownian motion W:

dX/=) oi(X)dW*,  Xo=xeR¢,
a=1

Approximate ODE
0X =0 (X))o WS,  Xo=x.
with

W = IR e lp((t-5)/e)Wds

where p: R - R, smooth and with integral one.

Then W;* > W, as ¢ — 0 for all # almost surely (and actually almost sure convergence takes place in any
Holder space with index less that 1/2).

Nonetheless X® — Y where Y is the process which solves the (different!) SDE
n

n d
dY/=Y oi(Y)dWr +C,Y > ol(Y)V/iei(Y)d,  1>0,i=1,....d

a=1 a=1 j=1
where here I'm assuming that W takes values in R” and Y in R¢and ¢,: R?> R4 for a =1,...,n smooth.
The constant C, depends on p.

Remark that
n d

(related to the Ito—Stratonovich correction).

n d
ol (V) Vigi(Yydi= Y Y al(Y)Vigj(X)d[W*, WP,
1 a,p=1j=1

Motivation 2. Controlled ODE:
() =0a(y(1))dx(t), x(0)=xeR?

with : R¢— L(R% R, x,ye C!([0,T],R¢). Consider now a sequence (x"),c C'([0,7],R% and (y™),
the family of associated solutions to the ODE, i.e.

Wy () =a(y™(m)ax"@).  y"™(0)=yeR?



No probability here. One can ask what happens if x™ — 0 (in some topology). Question: what happens to
")a?

One can prove that if x™ -0 in C7([0,T]; R?) (the y-Holder topology) for y > 1/2 then y™ — yq (the
constant function in yg) and the convergence holds also in C”. Let's assume that ¢ is smooth. (The optimal
regularity for ¢ depends actually on y).

However one can also prove that for any y € (1/3,1/2) and for any f € C*([0,T]; Ay) where A is the
space of antisymmetric d x d matrices. Then I can construct a family (x ), such that x” — 0 in C” but the
soltuions y™ do not converge to yo but to the solution z of the ODE (not quite an ODE)

d
32 (1)=CY al(HVIas(R)af P,  z(0)=y.
j=1

For simplicity you can assume that f e C'([0,T1;Ay) so that this is really an ODE.

Remark that if d =1 there is no space for an interesting case of this result and in d =1 is not difficult to
prove under sufficient regularity for o) that y™ — y, (what we expect) (this is related to Doss—Sussmann
transformation, that is one can prove that there exists a nice function F such that Y () =F (yo,x "™ () so
uniforml convergence of (x™), is enough to prove uniform convergence (™),

So the particular phenomenon we see at work here do not really depends on probability, depends however
on regularity and on dimension. In particular Holder regularity 1/2 has a boundary role, and also d > 1 is
the interesting situation.

Observation: if f e C? with y >1/2 then it has zero quadratic variation.

The core of the problem is that certain non-linear operations (involved in the construction of the solutions
to the ODE) are not continuous in C” topology if y <1/2.

Model problem is to understand the process of integration, namely the bilinear map

1,20 = [ f(s)dg(s).

When g € C! this can be understood as
t
1(£.8)(0)= [ f(5)ag(5)ds.
More generally one can define this as limit of Riemann sums of the form

Y FEN (G —g(£))
for some given partition {&;}; of [0, ¢]. l

We also know that as soon as g is of bounded variation and f is continuous, then the limit exists
(Lebesgue—Stiljies integral).

Another situation is that when f € C” and g € C* with (Young regime)
y+p>1
then the limit exists and is called the Young integral and moreover one has a bilinear and continuous map
(f,8)eC"xCPw1I(f,g)eC’.

In particular one can define [ f(s)dW(s) in a deterministic way where W is BM provided the function f
is Holder continuous with exponent y >1/2. Of course this is of NO USE to define SDE because in that
setting we really need to take f(s) = o (X;) and since X has to solve an SDE it must have the same regularity
of the BM so we are stuck with f'e C? for some y <1/2.



Note that if ¥ = p then the Young integral is well defined only when y >1/2. This is the key observation
to solve controlled ODE in C7 for y > 1/2 (as we did above).

Note also that if I use the same function f (e.g. smooth) then I have

1.0 0= [ 16107 6) = [ 0 f(ds =3 [ 0,7 °ds= (£ 1) F(O)).

Similarly

1,00+ 1. (0= [ F9)0g(5)ds+ [} 860 (5)ds =3 (F(1)8(0) = F(0)(0))

so this tell us that there is some privileged definition for the symmetric combination /(f,g) +1(g, f), and
that this definition make sense for functions f, g or arbitrary regularity. For example if (£, g™) - (0,0)
as n— 0 (e.g in the uniform topology) then is clear that

I(f("),g(”)) +I(g(”),f(”)) -0
but is not clear that
I(f("),g(”)) -0

actually below there is a counterexample.

The condition in the Young integral is optimal in the sense that I can show that the map (f,g) = I(f,g) is
not continuous if ¥ + p <1. Take @ >0 and

f™ ) =n"%in(nt), g™ (t)=n"%cos(nt),

exercise: show that (f™,g™) - (0,0) in C7([0,T]; R?) for any y < a. Then is a simple matter of compu-
tation to show that

](f(n)’f(n)) Z%(f(n)(l)Z—f(")(O)Z) 50
and also
I(f("),g(")) +I(g("),f(")) -0
but
1 1
1(F™, g™ (1) = fo n=24sin(n)dcos(nt) =n'-2“f0 sin(nt)dt = ctn'=2
e’

—ct>0

so if @ >1/2 this is going to zero but if we take a =1/2 this is converging to a linear function. So let's take
a =1/2 then we have that (f™,g™) - (0,0) in C7([0,T]; R?) for any y <1/2 but

I(f™,g"™)(t) = ct£0=1(0,0)(z)

So in particular the integration map is not continuous in C¥([0,T]; R) x C?([0,T];R) for y <1/2.
So when we mix up non-linearity with irregularity, things start getting intersting.

Note that (take ¢ =1/2)
t t
L™, F0 (1) = fo n~lsin(nt)dsin(nt) = —fo sin(nt)cos(nt)dr -0

because the oscillations cancels.



In order to understand the behaviour of the integration in an irregular situation (i.e. outside the Young
regime) we can introduce a different way to describe what is the (indefinite) integral of two functions.

I'say that z=1(f,g) is the integral of f and g if for all 0 < s< ¢ we have z(0) =0 and

2(t) —z(s) = f(5)(g(t) - g(s)) +1(1,5)

with r(t,s) small enough. In order to determine how small is small enough, the definition has to make sense,
meaning, thatif z,z” are two functions satisfying the above constraing then I must have z=z". Namely we
have

2(1)=z(s) = f(5)(g(1) —g(s)) +r(t,s), 2 (1)—-2"(s)=f(5)(g(1)—g(s)) +7(t,5)
and taking differences and calling 7 =z -z, we have that
h(t)=h(s)=r(t,s)=r'(t,s)

Now observe that if we take |r(t,s)|,|r’(,5)| < Clt—s|* for some ¢ > 1 (as definition of small enough) then
we have that

(1) =h(s)| < Clt=sI*
s0 04(1) =0 and 7 =0 so z=z" and the definition is well-posed. So z is the integral of f, g if
2(t) =z(s) = f(5) (g (1) —g(5)) + O(lt =sI'").
Read it as: z is the unique function (if it exists) such that

lz(1)=z(s) = f(5) (g(r) —g(s)ISlt=s,  O<s<1t

for some C and & > 1.

This is my definition of integral. Any of the above integrals satisfy this definition (classical integral, Young
integral) when they are defined.

Take for example B to be a Brownian motion and let's try to define the integral
2= [ p(Bw)ABwW

for some nice function ¢. This is not possible with Young integral. However we can expand in small time
intervals as

2(0-2() = [ 9 (BB = p(B$) (B ~B) + [ (9(Bl) = 9 (B(s))dB(w)

Now is clear (by stochastic arguments) that

[ (@B -pB)aBw| <yt~

for any y € (1/3,1/2). This is not enough to consider this as a remainder as above. So the idea is that I
continue to expand

2 -2() = p(Bs) B ~Bis) + [ [ Vo B0NaBwIEBW +3 [ ( [ ApBw)av)dBw

O(lt=s?") O(lt=s*)

The last term can be put into the reminder term and ignored while the second not. One observe also that

[ voBm)dBOABW so) [ ["aBwiaBw + [* [* (VB0 -V B©)dBMABW)

o(lt=sP’")




But by following the same reasoning above one can show that z is the unique function! such that
t u 1+
2(1)=2(5) =  (B()) (B() = B(s)) + Vo (B(s)) | [ dBOABw) +0(11=51'").

This description of the integral f Yt @ (B(u))dB(u) uses only the knowledge of

(B(l))t>0 (J: L” dB(V)dB(M))»wO'

So the integral of a large class of functions is determined by the knowedlge of the path of the Brownian
motion and of its area process

B2(s,1) := L’ [ dBm)dBw).
This is the initial point of the development of rough path theory. The Brownian rough path is the pair
(B,B)
satisfying
B?(s,1) = B*(s,u) + B2(u,1) + (B(t) -B(u)) ® (B(u) —B(s))
and
IB(1) =B(s)|+B(s,0)['2< Cle =517,
for some y € (1/3,1/2).
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