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Stochastic differential equations

Existence, uniqueness, various notions thereof, relations between such notions (continued).

Setting. Probability space (Q, %, P), filtration (%;),5¢ right-continuous, completed.
Definition 1. A (weak) solution of the SDE in R"
dX;=b(X;)dt + o (X;)dB;, te[0,T]
Xo=xeR"

is a pair of adapted processes (X, B) where (B;):>o is a m-dimensional Brownian motion and b, o are
coefficients b: R" > R", g: R"—> E(R™, R") such that almost surely

t t
fo Ib(X,)|ds < oo, fo Tr(o(X,)o (X,)T)ds< oo,  1€[0,T]
and that
t t
x,_x+fo b(XS)ds+fO o(X,)dB, 1€[0,T].
Note: a weak solution is really the data (Q, P, (%);>0,X,B).

Definition 2. A strong solution to the SDE above is a weak solution such that X is adapted to the P-
completed filtration (%.5),s0 generated by B, %5 =0 (By:s € [0, E.

Definition 3. An SDE has uniqueness in law iff two solutions (Q, F,P, (¥1)i=0.X,B), (Q', F ', P’,
(F)i50,X’,B’) are such that

Lawp (X) = Lawp/(X") € II(C([0, TT; R"), B(C([0, TT;R")))

Definition 4. An SDE has pathwise uniqueness if for any two weak solutions X,X' defined on the same
filt. prob. space and with the same BM B we have that they are indistinguishable, i.e.

P(Vte[0,T]: X, =X/) = 1.

Remark 5. You have to be familiar to the following basic concepts: adapted process, continuous time
martingale, local martingale, semimartingale, stochastic integral wrt. semimartingale, (one-)variation of a
process, quadratic variation of a processs, co-variation, Riemann-Stiljest integral, Ito formula, Levy carac-
terisation of Brownian motion (in one dimension).

Theorem 6. (Cherny) Uniqueness in law implies uniqueness of the law of the pair (X, B), i.e.

Lawp(X,B) =Lawp/(X’,B).

Theorem 7. (Cherny) Strong existence+uniquess in law = pathwise uniqueness.



Theorem 6 is quite easy to prove if the SDE is one dimensional with n=m =1 and o (x) >0 everywhere.
Indeed observe that if (X, B) is a solution, then the process

t
M= o(X)dB,=X,-x- [ b(X M
is a local martigale and it is measurable wrt. X. But then we have
[ e am,= [ (0 (X))o (X)dB,= [ dB,=B
0 s N 0 s s s 0 N

therefore B is X measurable and a consequence B = ¥ (X) and we conclude that
Lawp (X, B) =Lawp (X, ¥ (X)) =Lawp (X, ¥ (X)) =Lawp/(X’,B’)

if X, X’ have the same law. Note that B’ = ¥ (X’) because the map ¥ can be constructed in an almost sure
way as follows. From (1) we have that there exists an (adapted) map & such that M, ®,(X). (and we will
have the same for M" = ®(X’). And remember that for the stochastic integral fo X,))~'dM, there exists
a sequence of (deterministic) partitions I, ={¢{,...,#{,...} such that one can express fo (o (X)) 1AM, as
almost sure limit of Riemann sums over the sequence of partitions

B,=f0[< (X,)™'dM, —hmz (X))~ (M, = Myy) —hmz X)) (@yp,, (X) = @p(X)) = ¥, (X)

and one can arrange to have the same partition for the primed solution and therefore have B” = ¥ (X”) at
least P’-a.s. (I skipped the detail of localizing the local martingale M in order to find the deterministic
partition).

Let's discuss now the general case. Taken>1,m>1 o:R"—-> Z(R™;R") = R™™.

Let (QF%, %% P#) another probability space on which there are two R"™-Brownian motions W, W. I form the
product space Q=0xQ F=F F* P=Po® P#) and on Q 1 consider the solution (X, B) of the SDE
together with processes W, W. Note that (W, W) is independent of (X, B). Of course Lawp (X, B) =Lawp (X,
B). For any fixed x € R” consider now ¢ (x), y (x) € R™ such that they are orthogonal projections on
orthogonal subspaces:

p)=p@)’, y@ =y, yx)’=px), ex)?=9x), XY x)=0, @x)+yx)=1L,,

and such that o (x) g (x) = a(~ x) and o (x)y (x) =0. So Im(¢(x )t =Ker(o(x)) = Im(y (x)). Now I define
two new processes U, V on Q, with values in R" and such that Uy= V=0 and

dU;=¢(X,)dB, + '//(Xr)d‘in
dVi=y (X,)dB,; + ¢ (X;)dW,
With this definition we have

AU U1= ) @™ (X) @/ (X)d[B, B+ o™ (X)y/! (X, d[BX, W',
k.l =Skt k.l h:f)__

+Z Y (X) @ (X)W, B +Z v Xy (X)W W,
=0 —3k/dt

=(pX)eX))dt+ (w XDy (X)) dr =8, ;dr
by the properties of ¢, y. Similarly d[V',V/], = §; ;dt and moreover d[U’, V'], =0 since ¢ (x)y (x) =0

We conclude the process (U, V) is a pair of independent R”-Brownian motions (by the multidimensional
version of Levy's caracterisation theorem, we will prove it later on). Now we have

Brzfo’(p(xs)dUS, fotU(Xs)st:IO’U(Xs)(p(XS)dBS:fOt o (X,)dU



This implies that (f!, I@’ (S"/:,X’U) >0, X, U) is a weak solution to the SDE. I want to prove that V is indepen-
dent of X. Define the filtration (%;),>0 given by

G=0(U,X:s<t)vo(Vgsz0).

Since U is independent of V, then U is still a (/);>0 Brownian motion, which implies in particular that
(U;):>0 is independent of &, therefore (Q, P, (%;):0,X, U) is still a solution of the SDE.

Now we want to consider the regular conditional probability of P given & that is the family of probability
kernels Q: Q — I1(Q) such that

Q.,()=P(1%)(w), forP-ae. weQ.

I'can do it because I can set up the full theorem in the case where Q is the Polish space Q=%"3m=C (R,
R”"xR"™xR"™xR™). The probability kernel Q is unique P-a.s. Observe that ¥y= o (V;:s>0) since we take
a deteministic initial condition for Xy =x € R".

Observe that almost sure events for P remains almost sure for Q,, (for P-ae. we f!), i.e.

1=P(A)= (Q,(A)=1,for P-ae. weQ)
indeed

1=P(A) —f Q. (A)P(dw).

By one of the theorems proven in Sheet O (this week), we have that ( Q Qu, (9120, X, U) is still a weak
solution to the SDE for P-a.e. w € Q. By uniqueness in law of the solutions to the SDE (by assumption),
we have that the law under Q, of X does not depend on w, i.e.

Q,(Xe-)=Lawg, (X)=Lawg,(X) forae. w,0' €Q.

Now

IP’(XeA,VeB):LVeB}Qw(XeA)P(da)):fﬁ Q. (XeA)P(dw) (VeB}P(dw)_ P(XeA)P(VeB)

We conclude that X, V are independent. Next we are going to prove that B=B(X, V).
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