Lecture 3 – 28.04.2020 – 12:15 via Zoom

Stochastic differential equations

Existence, uniqueness, various notions thereof, relations between such notions (continued).

Setting. Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, filtration $(\mathcal{F}_t)_{t\geq 0}$ right-continuous, completed.

Definition 1. A (weak) solution of the SDE in \mathbb{R}^n

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad t \in [0, T]$$

$$X_0 = x \in \mathbb{R}^n$$

is a pair of adapted processes (X,B) where $(B_t)_{t\geqslant 0}$ is a m-dimensional Brownian motion and b,σ are coefficients $b: \mathbb{R}^n \to \mathbb{R}^n$, $\sigma: \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^m; \mathbb{R}^n)$ such that almost surely

$$\int_0^t |b(X_s)| \mathrm{d}s < \infty, \quad \int_0^t \mathrm{Tr}(\sigma(X_s)\sigma(X_s)^T) \mathrm{d}s < \infty, \quad t \in [0, T]$$

and that

$$X_t = x + \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dB_s, \quad t \in [0, T].$$

Note: a weak solution is really the data $(\Omega, \mathbb{P}, (\mathscr{F}_t)_{t \geq 0}, X, B)$.

Definition 2. A strong solution to the SDE above is a weak solution such that X is adapted to the Pcompleted filtration $(\mathcal{F}_t^B)_{t\geq 0}$ generated by $B, \mathcal{F}_t^B := \overline{\sigma(B_s: s \in [0, t])}^{\mathbb{P}}$.

Definition 3. An SDE has uniqueness in law iff two solutions $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0}, X, B), (\Omega', \mathcal{F}', \mathbb{P}', \mathbb{P}', \mathbb{P}', \mathbb{P}')$ $(\mathcal{F}_t')_{t\geq 0}, X', B'$) are such that

$$\operatorname{Law}_{\mathbb{P}}(X) = \operatorname{Law}_{\mathbb{P}'}(X') \in \Pi(C([0,T];\mathbb{R}^n), \mathcal{B}(C([0,T];\mathbb{R}^n)))$$

Definition 4. An SDE has **pathwise uniqueness** if for any two weak solutions X, X' defined on the same filt. prob. space and with the same BM B we have that they are indistinguishable, i.e.

$$\mathbb{P}(\forall t \in [0, T]: X_t = X_t') = 1.$$

Remark 5. You have to be familiar to the following basic concepts: adapted process, continuous time martingale, local martingale, semimartingale, stochastic integral wrt. semimartingale, (one-)variation of a process, quadratic variation of a processs, co-variation, Riemann-Stiljest integral, Ito formula, Levy caracterisation of Brownian motion (in one dimension).

Theorem 6. (Cherny) Uniqueness in law implies uniqueness of the law of the pair (X,B), i.e.

$$Law_{\mathbb{P}}(X,B) = Law_{\mathbb{P}'}(X',B').$$

Theorem 7. (Cherny) Strong existence+uniquess in law \Rightarrow pathwise uniqueness.

Theorem 6 is quite easy to prove if the SDE is one dimensional with n = m = 1 and $\sigma(x) > 0$ everywhere. Indeed observe that if (X, B) is a solution, then the process

$$M_{t} = \int_{0}^{t} \sigma(X_{s}) dB_{s} = X_{t} - x - \int_{0}^{t} b(X_{s}) ds$$
 (1)

is a local martigale and it is measurable wrt. X. But then we have

$$\int_{0}^{t} (\sigma(X_{s}))^{-1} dM_{s} = \int_{0}^{t} (\sigma(X_{s}))^{-1} \sigma(X_{s}) dB_{s} = \int_{0}^{t} dB_{s} = B_{t}$$

therefore *B* is *X* measurable and a consequence $B = \Psi(X)$ and we conclude that

$$Law_{\mathbb{P}}(X,B) = Law_{\mathbb{P}}(X,\Psi(X)) = Law_{\mathbb{P}'}(X',\Psi(X')) = Law_{\mathbb{P}'}(X',B')$$

if X,X' have the same law. Note that $B' = \Psi(X')$ because the map Ψ can be constructed in an almost sure way as follows. From (1) we have that there exists an (adapted) map Φ such that $M_t = \Phi_t(X)$. (and we will have the same for $M' = \Phi(X')$. And remember that for the stochastic integral $\int_0^t (\sigma(X_s))^{-1} dM_s$ there exists a sequence of (deterministic) partitions $\Pi_n = \{t_1^n, \dots, t_k^n, \dots\}$ such that one can express $\int_0^t (\sigma(X_s))^{-1} dM_s$ as almost sure limit of Riemann sums over the sequence of partitions

$$B_{t} = \int_{0}^{t} (\sigma(X_{s}))^{-1} dM_{s} = \lim_{n} \sum_{k} (\sigma(X_{t_{k}^{n}}))^{-1} (M_{t_{k+1}^{n}} - M_{t_{k}^{n}}) = \lim_{n} \sum_{k} (\sigma(X_{t_{k}^{n}}))^{-1} (\Phi_{t_{k+1}^{n}}(X) - \Phi_{t_{k}^{n}}(X)) = \Psi_{t}(X)$$

and one can arrange to have the same partition for the primed solution and therefore have $B' = \Psi(X')$ at least \mathbb{P}' -a.s. (I skipped the detail of localizing the local martingale M in order to find the deterministic partition).

Let's discuss now the general case. Take $n \ge 1$, $m \ge 1$ $\sigma: \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^m; \mathbb{R}^n) \approx \mathbb{R}^{n \times m}$.

Let $(\Omega^{\sharp}, \mathscr{F}^{\sharp}, \mathbb{P}^{\sharp})$ another probability space on which there are two \mathbb{R}^m -Brownian motions W, \bar{W} . I form the product space $(\tilde{\Omega} = \Omega \times \Omega^{\sharp}, \tilde{\mathscr{F}} = \mathscr{F} \otimes \mathscr{F}^{\sharp}, \tilde{\mathbb{P}} = \mathbb{P} \otimes \mathbb{P}^{\sharp})$ and on $\tilde{\Omega}$ I consider the solution (X, B) of the SDE together with processes W, \bar{W} . Note that (W, \bar{W}) is independent of (X, B). Of course $\text{Law}_{\tilde{\mathbb{P}}}(X, B) = \text{Law}_{\mathbb{P}}(X, B)$. For any fixed $X \in \mathbb{R}^n$ consider now $\varphi(X), \psi(X) \in \mathbb{R}^{m \times m}$ such that they are orthogonal projections on orthogonal subspaces:

$$\varphi(x) = \varphi(x)^T$$
, $\psi(x) = \psi(x)^T$, $\psi(x)^2 = \psi(x)$, $\varphi(x)^2 = \varphi(x)$, $\varphi(x)\psi(x) = 0$, $\varphi(x) + \psi(x) = \mathbb{1}_{n \times n}$

and such that $\sigma(x)\varphi(x) = \sigma(x)$ and $\sigma(x)\psi(x) = 0$. So $\operatorname{Im}(\varphi(x))^{\perp} = \operatorname{Ker}(\sigma(x)) = \operatorname{Im}(\psi(x))$. Now I define two new processes U, V on $\tilde{\Omega}$, with values in \mathbb{R}^n and such that $U_0 = V_0 = 0$ and

$$dU_t = \varphi(X_t)dB_t + \psi(X_t)dW_t$$

$$dV_t = \psi(X_t)dB_t + \varphi(X_t)d\bar{W}_t$$

With this definition we have

$$d[U^{i}, U^{j}]_{t} = \sum_{k,l} \varphi^{i,k}(X_{t}) \varphi^{j,l}(X_{t}) d[\underbrace{B^{k}, B^{l}}_{=\delta_{k,l}t}]_{t} + \sum_{k,l} \varphi^{i,k}(X_{t}) \psi^{j,l}(X_{t}) d[\underbrace{B^{k}, W^{l}}_{=0}]_{t}$$

$$+ \sum_{k,l} \psi^{i,k}(X_{t}) \varphi^{j,l}(X_{t}) d[\underbrace{W^{k}, B^{l}}_{=0}]_{t} + \sum_{k,l} \psi^{i,k}(X_{t}) \psi^{j,l}(X_{t}) d[\underbrace{W^{k}, W^{l}}_{=\delta_{k,l}dt}]_{t}$$

$$= (\varphi(X_{t}) \varphi(X_{t})^{T})^{i,j} dt + (\psi(X_{t}) \psi(X_{t})^{T})^{i,j} dt = \delta_{i,j} dt$$

by the properties of φ , ψ . Similarly $d[V^i, V^j]_t = \delta_{i,j} dt$ and moreover $d[U^i, V^j]_t = 0$ since $\varphi(x)\psi(x) = 0$. We conclude the process (U, V) is a pair of independent \mathbb{R}^m -Brownian motions (by the multidimensional version of Levy's caracterisation theorem, we will prove it later on). Now we have

$$B_t = \int_0^t \varphi(X_s) dU_s, \qquad \int_0^t \sigma(X_s) dB_s = \int_0^t \sigma(X_s) \varphi(X_s) dB_s = \int_0^t \sigma(X_s) dU_s.$$

This implies that $(\tilde{\Omega}, \tilde{\mathbb{P}}, (\tilde{\mathscr{F}}_t^{X,U})_{t\geqslant 0}, X, U)$ is a weak solution to the SDE. I want to prove that V is independent of X. Define the filtration $(\mathscr{G}_t)_{t\geqslant 0}$ given by

$$\mathcal{G}_t = \sigma(U_s, X_s; s \leq t) \vee \sigma(V_s; s \geq 0).$$

Since U is independent of V, then U is still a $(\mathcal{G}_t)_{t\geq 0}$ Brownian motion, which implies in particular that $(U_t)_{t\geq 0}$ is independent of \mathcal{G}_0 therefore $(\tilde{\Omega}, \tilde{\mathbb{P}}, (\mathcal{G}_t)_{t\geq 0}, X, U)$ is still a solution of the SDE.

Now we want to consider the regular conditional probability of $\tilde{\mathbb{P}}$ given \mathscr{G}_0 that is the family of probability kernels $\mathbb{Q}: \tilde{\Omega} \to \Pi(\tilde{\Omega})$ such that

$$\mathbb{Q}_{\omega}(\cdot) = \tilde{\mathbb{P}}(\cdot|\mathcal{G}_0)(\omega), \quad \text{for } \tilde{\mathbb{P}}\text{-a.e. } \omega \in \tilde{\Omega}.$$

I can do it because I can set up the full theorem in the case where $\tilde{\Omega}$ is the Polish space $\tilde{\Omega} = \mathcal{C}^{n+3m} = C(\mathbb{R}_+, \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m)$. The probability kernel \mathbb{Q} is unique $\tilde{\mathbb{P}}$ -a.s. Observe that $\mathcal{G}_0 = \sigma(V_s: s \geqslant 0)$ since we take a deterministic initial condition for $X_0 = x \in \mathbb{R}^n$.

Observe that almost sure events for $\tilde{\mathbb{P}}$ remains almost sure for \mathbb{Q}_{ω} (for $\tilde{\mathbb{P}}$ -a.e. $\omega \in \tilde{\Omega}$), i.e.

$$1 = \tilde{\mathbb{P}}(A) \Rightarrow (\mathbb{Q}_{\omega}(A) = 1, \text{ for } \tilde{\mathbb{P}}\text{-a.e. } \omega \in \tilde{\Omega})$$

indeed

$$1 = \widetilde{\mathbb{P}}(A) = \int_{\widetilde{\Omega}} \mathbb{Q}_{\omega}(A) \widetilde{\mathbb{P}}(d\omega).$$

By one of the theorems proven in Sheet 0 (this week), we have that $(\tilde{\Omega}, \mathbb{Q}_{\omega}, (\mathcal{G}_t)_{t \geq 0}, X, U)$ is still a weak solution to the SDE for $\tilde{\mathbb{P}}$ -a.e. $\omega \in \tilde{\Omega}$. By uniqueness in law of the solutions to the SDE (by assumption), we have that the law under \mathbb{Q}_{ω} of X does not depend on ω , i.e.

$$\mathbb{Q}_{\omega}(X \in \cdot) = \mathrm{Law}_{\mathbb{Q}_{\omega}}(X) = \mathrm{Law}_{\mathbb{Q}_{\omega'}}(X) \qquad \text{for a.e. } \omega, \omega' \in \tilde{\Omega}.$$

Now

$$\widetilde{\mathbb{P}}(X \in A, V \in B) = \int_{\{V \in B\}} \mathbb{Q}_{\omega}(X \in A) \, \widetilde{\mathbb{P}}(\mathrm{d}\omega) = \int_{\tilde{\Omega}} \mathbb{Q}_{\omega'}(X \in A) \, \widetilde{\mathbb{P}}(\mathrm{d}\omega') \int_{\{V \in B\}} \widetilde{\mathbb{P}}(\mathrm{d}\omega) = \widetilde{\mathbb{P}}(X \in A) \, \widetilde{\mathbb{P}}(V \in B)$$

We conclude that X, V are independent. Next we are going to prove that B = B(X, V).