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Stochastic differential equations

Existence, uniqueness, various notions thereof, relations between such notions (continued).

Theorem 1. (Cherny) If an SDE has uniqueness in law then any weak solution (X, B) has the same law.
Recall that uniqueness in law means that two weak solutions (P, X, B) and (P’,X’,B’) satisfy Lawp(X) =

Lawp/(X").

In order to prove the theorem we constructed a new Polish probability space Q which supports the law of a
solution (X, B) of the SDE and also two independent BM W, W. We defined two new R"-valued BMs with

dU;= ¢ (X;)dB; + W(Xt)d‘ivty
dVi=w (X))dB; + ¢ (X;)dW,.

With ¢ (x) the projection on ker (o (x))* and v (x) the projection on ker(o (x)). Using uniqueness in law we
proved that V is independent of X.

Let us introduce a matrix y (x) € R™" =~ Z(R";R"™) such that y (x)o (x) = ¢ (x) (left inverse to o) then let

M, =X, - fb ds—f o (X,)dB,

then M is local martingale and

[} xxpam,= [ 7 X0 (X)dB,= [ p(X)dB.= [ p(X)dU,

and

B,=I0t((p(X)+y/(__/dB fq) dU+Il[/ X,)dV, = f;( dM+f.// )dv,

So we have that B, can be expressed as a measurable function of (X, V). Therefore there exists a measurable
map I': €"x €™ — €™ such that B=T (X, V). Therefore (X,B)=(X,T'(X,V)). If (X’,B’) is another weak
solution we will have in the same way that (X’,B") = (X’,T'(X’,V’)). But X is independent of V, V has the
same law of V' (both m-dim BM) and X has the same law of X’ (by assumption). So

Law(X,V)=Law(X’,V’)
and as a consequence
Law(X,B) =Law(X, T (X,V)) =Law(X', T (X’,V")) =Law(X’,B’).

This concludes the proof of the theorem.

Theorem 2. (Cherny) Strong existence and uniqueness in law imply path-wise uniqueness.

Proof. By strong existence there exist a weak solution (X, B) such that X = ®(B). By uniqueness in law and
the previous theorem we have that any two weak solutions (X, B) and (X ’'B’) have the same law. So now
take another weak solution (X, B) on the same probability space of (X, B) and with the same BM. Then we
have that

Law(X’,B) =Law (X, B) =Law(®(B),B)



It means that P(X' =& (B)) =P (X =®(B)) =1 this implies that P(X=X")=1. So we have pathwise unique-
ness. O

Remember that Yamada-Watanabe says that path-wise uniqueness and weak existence implies existence of
strong solutions.

Levy's caracterisation of multidimensional BM.

Theorem 3. Let (M;);>o be a local martingale with values in R" such that My=0 and
M\, M7],=8;it 1>0,

then (M;);>¢ is a R"-valued Brownian motion.
Proof. Take ve R" and let M;” = (v, M,) a one dimensional local martingale. Note that

[M*),=[M* M), =) VWM MI),=) vivis; =]t
ij ij
Introduce the process

®) = exp(iM,” + %[M,”]t) _ exp(iM,” + %nvn%) - exp(%nvu%) (cos(M/") +isin(M}'))

observe that

19/ <

exp(iM,” + %[M,”],) < exp(%llvllzt).

So the family (®/),¢[o,r] is uniformly integrable in any bounded interval [0, T]. Moreover by Ito formula
l'z

de; = exp(iM,” +%[M,”],) (idM,v + %d[M,V][) + 7exp(iM,V + %[Mtv][)d[MV],

Ito correction

=<I>,”(idM,M%/VI,”],—%tI),V?Y{MV],) =id)dM;,

So we have

t
o) =) + fo i®rdM,

which shows that (®),¢(0,7] is a local martingale (because the stoch. int. fot i®)dM, is alocal mart.) and
by the integrability is also a martingale (in that interval). Therefore

1= (@)@} = (9))'E[9;|1F]=E[®}(®))"|F]

=E[exp(i (M7= M3) + (M)~ 710 ) 7
which shows that
2
Blexp(i(r. M, - M1 =exp~L3- 1))

for any 0 <s<#<T but since T is arbitrary, the relation is true for any time. First consequence of this rela-
tion is that M, — M, is independent of % (because the conditional expectation of the complext exponential
is non-random. Indeed for any X € %, (measurable wrt) one has

Elexp(i{v,M,— M) +iaX)]=E[exp(i{v,M,- M))]E[i aX]



(think about it) and by the properties of characteristic functions of vector valued r.v. one has that M;— M,
is independent of X. Moreover M,—M; is a centred Gaussian vector with covariance matrix 1,,,(f—s).

Using these two facts one prove by induction that for any 0<# <#, <--- <t,, we have that (M, =M, )i=1.... n-1
is an independent family of Gaussian vectors. Since (M;),>¢ is continuous and adapted to (%;);»0 we deduce
that (M;);>0 is a n dimensional Brownian motion. O

Some interesting facts come out of it.

Example 4. (Random rotations) Let B be a n-dimensional Brownian motion and (Oy),so be an adapted
process made of orthogonal transformations of R”, i.e. O,€ $(R",R") and 0/0,=0,0! =1,.,. Then
consider the R” valued local martingale

t
M, = fo 0.dB, = . dM,=0,dB,

" t .. .
0"idB]
3 [ ovtan|
We have

M M'],= 0 0'd[B*, B 00 ds= 6, t
t klz"lj‘ 6klda I Z o

so by Levy's theorem this process is again a Brownian motion.

Example 5. (Bessel process) Let B be n-dimensional Brownian motion starting from Byp=x € R"#0 and
consider the process R; = |B;| be the Euclidean length of B;. I want to compute the dynamics of R,. The
function ¢ (x) = |x| is smooth away from the origin and

61/ x'x/

Vo)==, ViVipx)= ™

d
T R%3x+0.

By Ito formula

- B! n-1 1 n—-1dt
_ _ i J l _
dR,=d¢(B;) = E '0(B,)dB! + 5 E ViVig(B,)d[B),B'],= E |B,|dB 5 |B|dt dw; + R

:;aw,_'/

as least for some small random time interval (in order to be sure that B, does not touch the origin). Moreover
the local martingale (W;), is really a Brownian motion, indeed

i=1 ij=1

f Z |B||B|h,_‘ Idt‘t

=8; ds

So (R;, W;) is a weak solution of the one dimensional SDE

n-1dz

dR;= TR

+dW,

with initial condition Ry=|By|>0. Observe that R, >0 for any time # < Ty =inf {# >0: R, =0}. Here n has to be
integer. But the SDE has a meaning also for n € R. From the properties of the Brownian motion we know
that if n>2 then T = +oo almost surely, while if n=1 then 7y < co a.s. What about uniqueness of solutions.

Theorem 6. For pathwise uniqueness in one dimension see the theorem of Yamada-Watanabe in the Sheet
0, essentially we have pathwise uniqueness as soon as the drift b: R - R is locally Lipschitz continuous i.e.

1b(x)=b(y)|<Clx-)yl
(same as for ODEs) and the diffusion coefficient o: R — R is locally 1/2-Hélder continuous, i.e.

lo(x)— o (y)| < Clx—y|'2.



Theorem 7. In general dimension pathwise uniqueness holds when both b, o are locally Lipschitz contin-
uous (sufficient only).

Therefore the SDE

n-1dt

dR[ =TE+ d"Vt,

has pathwise uniqueness away from 0, meaning that given two continuous solutions R,R” with same W and
Ro=R{ >0 and letting

T =inf{t>0:R,=0 or R} =0}
then R, =R/ for all 1< T. Indeed in any open set away from O the coefficients o(x) =1 and b(x) = (n—

1) / (2x) are locally Lipshitz. Which means that the unique strong solution stay positive when n >?2 and that
Tp=+co a.s. The process (R;),>¢ is called the n-dimensional Bessel process.



	Stochastic differential equations

