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SDE techniques: martingale solutions, time change
Martingale solutions, relations with weak solutions, (uniqueness), time change of martingale solutions,
DDS theorem.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Martingale solutions is another technique to caracterise and study solutions of SDEs:

dXt =b(Xt)dt +𝜎(Xt)dBt�
dMt

(1)

In this relation we need to discuss two processes: the solution X and the driving Brownian motion B. We
take X to be ℝn-valued and B to be ℝm-valued and b: ℝn → ℝn and 𝜎: ℝn → ℒ(ℝm; ℝn) measurable and
locally bounded.
Martingale solution characterise the process X alone without the need of introducing the driving BM. To
start observe the following two facts: if X solve the SDE then

Mt =Xt −X0−�
0

t
b(Xs)ds

is a local martingale with quadratic variation

[M i,M j]t =�
0

t
aij(Xs)ds, i, j =1, . . . ,n

with a(x)=𝜎(x) 𝜎(x)T i.e. a(x)i, j =∑k=1
m 𝜎(x)i,k𝜎(x)j,k. Similarly for any f ∈ C2(ℝn) by Ito formula we

have

f (Xt)= f (X0)+�
0

t
∇ f (Xs) ⋅𝜎(Xs)dBs|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
≔Mt

f (local martingale)

+�
0

t
ℒf (Xs)ds,

with ℒ a linear operator (generator) defined on C2 functions as

ℒf (x)=b(x) ⋅∇ f (x)+ 1
2 �

i, j=1

n

ai, j(x)∇i∇jf (x).

Definition 1. We say that (Xt)t is martingale solution of the SDE (1) if one of the following equivalent facts
holds:

a) For any f ∈C2(ℝn) we have that

Mt
f ≔ f (Xt)− f (X0)−�

0

t
ℒf (Xs)ds

is a local martingale.

b) The ℝn-valued continuous process

Mt =Xt −X0−�
0

t
b(Xs)ds

is a local martingale with covariation

[M i,M j]t =�
0

t
a ij(Xs)ds,
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c) For any f ∈C1,2(ℝ+ ×ℝn) we have

Mt
f ≔ f (t,Xt)− f (0,X0)−�

0

t
�� ∂

∂s +ℒ� f �(s,Xs)ds

is a local martingale.

This formulation is really a description of the law of X. Consider 𝒞=C(ℝ+;ℝn) with the Borel 𝜎-field 𝒢,
the canonical filtration (𝒢t)t⩾0 and canonical process Zt(𝜔)=𝜔t.

Definition 2. A probability ℙ on (𝒞,𝒢, (𝒢t)t⩾0) is a martingale solution (or a solution of the martingale
problem) of the SDE if the canonical process (Zt)t is a martingale solution under ℙ.

Note that the notion of martingale depends on ℙ.

Theorem 3. If (𝒞, 𝒢, (𝒢t)t⩾0, ℚ) is a martingale solution to the SDE (1) iff there exist a probability
space (Ω, ℱ, ℙ) and two processes (X, B) over it such that (X, B) is a weak solution to the SDE and
Lawℙ(X)=Lawℚ(Z).

Proof. If (X, B) is a weak solution then taking ℚ = Lawℙ(X) give that ℚ is a martingale solution. The
more difficult part is to start from a solution of the martingale problem ℚ and try to reconstruct a Brownian
motion B and then a weak solution. (this reminds us the situation in Cherny's theorem). Indeed if 𝜎 is non-
degenerate, i.e. there exists a (locally bounded) two side inverse 𝜎(x)−1 then we could simply take the ℚ-
local martingale

Mt =Zt −Z0 −�
0

t
b(Zs)ds

(recall that we are on 𝒞 with canonical process Z) and define on 𝒞

Bt ≔�
0

t
𝜎(Zs)−1dMs

and check that this is indeed a (ℚ, (𝒢t)t⩾0)-Brownian motion and that

Zt −Z0−�
0

t
b(Zs)ds=�

0

t
dMs =�

0

t
𝜎(Zs)dBs

so (Z,B) is a weak-solution. In this case we can perform the construction on the same probability space. If
𝜎 is not invertible we proceed as in Cherny's theorem. We have a left inverse 𝜒(x) such that 𝜎(x)𝜒(x)=
1n×n and 𝜒(x)𝜎(x) = 𝜑(x) where 𝜑(x) is the orthogonal projection on ker(𝜑(x))⊥ and we call 𝜓(x) the
orthogonal projection on ker(𝜎(x)). Now we take a larger probability space (Ω, ℱ, ℙ) with processes
(X, W) such that Lawℙ(X) = Lawℚ(Z) and X, W are independent and W is a m-dimensional Brownian
motion. The we set

Mt =Xt −X0−�
0

t
b(Xs)ds

Bt =�
0

t
𝜒(Xs)dMs +�

0

t
𝜓(Xs)dWs

now is easy to check that (Mt)t is a local martingale with quadratic variation d[M i,M j]t =ai, j(Xt)dt (because
under ℙ the process X is a martingale solution) and moreover (Bt)t is a Brownian motion.

d[B,B]t =𝜒(Xs)a(Xs)𝜒(Xs)Tds+𝜓(Xs)𝜓(Xs)Tds

=𝜒(Xs)𝜎(Xs)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝜑(Xs)

𝜎(Xs)T𝜒(Xs)Tds+𝜓(Xs)𝜓(Xs)Tds

=(𝜑(Xs)𝜑(Xs)T +𝜓(Xs)𝜓(Xs)T)ds=1n×nds.
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□

Remark 4. Note that the notion of martingale solution makes sense also when 𝜎=0. Exercise: prove that
in this case a process X satisfies the martingale problem iff X is a solution of the ODE

d
dtXt =b(Xt), t ⩾0.

In this case ℒf (x)=b(x) ⋅∇ f (x).

See the book of Rogers and Williams and of Ethier and Kurtz for nice applications of the martingale
problem approach.

Mart. prob. were introduced by Stroock and Varadhan (see their book: “Multidimensional diffusion
processes”)

Remark 5. Uniqueness in law is equivalent to the uniqueness of solutions to the martingale problem.

Remark 6. The notion of martingale problem makes sense even when the process X does not take values
in a vector space, e.g. on a manifold ℳ. Indeed note that X solve the martingale problem iff

Mt
f ≔ f (Xt)− f (X0)−�

0

t
ℒf (Xs)ds

is a local (real-valued) martingale for any f ∈C2(ℳ) where

ℒf =Bf + 1
2 �

𝛼=1

m

V𝛼(V𝛼f )

with B, (V𝛼)𝛼=1, . . . ,n are vector fields on ℳ. In the case where ℳ=ℝn we have

Bf =b(x) ⋅∇ f (x)− 1
2 �

𝛼=1

n

(𝜎𝛼(x) ⋅∇𝜎𝛼(x)) ⋅∇ f (x), V𝛼f =𝜎𝛼(x) ⋅∇ f (x)

with (𝜎𝛼(x))𝛼=1, . . . ,m the rows of the matrix 𝜎(x). We will discuss more on detail this application when we
are going to study SDE on manifolds and Stratonovich integral.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Time change in martingale problems

Let X be the solution of the SDE (1) in the sense of martingale problem. Let 𝜚(x):ℝn→ℝ+ which is locally
bounded and 𝜚(x)>0 everywhere and let

At ≔�
0

t
𝜚(Xs)ds.

This process is increasing and continuous assume for simplicity that A∞=+∞. Define Ta=inf{t⩾0: At ⩾a}
for a⩾0. Then T0 =0 and T is the left inverse to A in the sense that

TAt =inf {s⩾0: As ⩾ At}= t

for all t >0 and is defined for all a>0. Moreover Ta is a stopping time for the filtration generated by (Xs)s.
Define the process Ya=XTa for all a>0. Now the question is to characterise (Ya)a⩾0. Of course Y0=X0. Take
f ∈C2(ℝn) and note that

Mt
f = f (Xt)− f (X0)−�

0

t
ℒf (Xs)ds
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is a local (ℱt)t⩾0-martingale. Therefore the process (Na
f)a⩾0 defined by Na

f =MTa
f is a local martingale wrt.

the filtraltrion (𝒢a)a⩾0 defined by 𝒢a =ℱTa (recall the def of 𝜎-algebra of a stopping time and the optional
sampling theorem for continuous martingales with bounded quadratic variation, note also that Ta ⩽ Tb if
a⩽b).

Na
f =MTa

f = f (XTa)− f (X0)−�
0

Ta
ℒf (Xs)ds= f (Ya)− f (Y0)−�

0

Ta
ℒf (Xs)ds.

To conclude observe that by doing the change of variables s= s(b) such that b= As or Tb = s

db=𝜚(Xs)ds

therefore

ds= db
𝜚(Xs)

and

�
0

Ta
ℒf (Xs)ds=�

0

a
ℒf (Yb)ds(b)=�

0

a
ℒf (Yb)

db
𝜚(Xs)

=�
0

a
ℒ𝜚f (Yb)db

with

ℒ𝜚f (x)= 1
𝜚(x)ℒf (x)= 1

𝜚(x)b(x)||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
b𝜚

⋅∇ f (x)+ 1
2 �

i, j=1

n 1
𝜚(x)ai, j(x)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=𝜎𝜚(𝜎𝜚)T

∇i∇jf (x).

So (Ya)a⩾0 solves the martingale problem associated to the generator ℒ𝜚 namely, is associated to the SDE

dZa =b𝜚(Za)da+𝜎𝜚(Za)dBa, a⩾0

where b𝜚(x)=b(x)/𝜚(x) and 𝜎𝜚(x)=𝜎(x)/(𝜚(x))1/2.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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