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SDE techniques: martingale solutions, time change
Uniqueness of martingale solutions, one dimensional diffusions.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1 Uniqueness of the martingale problem for a diffusion
𝒞 = 𝒞n = C(R+, ℝn) with its Borel 𝜎-algebra ℱ and canonical process (Xt)t⩾0 with associated filtration
(ℱt)t⩾0. Remember that with Π(𝒞) we denote the probability measures on the path space 𝒞.
Consider the generator ℒ defined for any f ∈C2(ℝn) as

ℒf (x)=b(x) ⋅∇ f (x)+ 1
2Tr(a∇2 f (x)), x ∈ℝn,

with measurable and bounded coefficients.

Definition 1. We say that ℙ on (𝒞,(ℱt)t⩾0) is a solution of the martingale problem for the generator ℒ iff
for any f ∈C1,2(ℝ+ ×ℝn;ℝ)

Mt
f ≔ f (t,Xt)− f (0,X0)−�

0

t
(∂s +ℒ) f (s,Xs)ds (1)

is a ℙ-martingale wrt. (ℱt)t⩾0.

We want to discuss the uniqueness of such solutions, meaning the following.

Definition 2. We say that the martingale problem (1) has unique solution if any two solutions ℙ,ℚ∈Π(𝒞)
of the martingale problem such that Lawℙ(X0)=Lawℚ(X0) then ℙ=ℚ.

This notion corresponds directly with the uniqueness in law of the corresponding weak solutions. It is
enough that ℙ,ℚ coincide on finite dimensional distributions.
Let use observe that if 𝜑 ∈C1,2(ℝ+ ×ℝn;ℝ) is a solution to the (parabolic) PDE (Kolmogorov backward
equation)

∂t𝜑(t, x)=ℒ𝜑(t,x), t ⩾0,x ∈ℝn, (2)

Note that (∂s +ℒ)𝜑(r − s,Xs)=0 for any r > s, therefore for any r >0 and any t ∈[0, r] the process

Mt
r =𝜑(r − t,Xt)−𝜑(r,X0)−�

0

t
(∂s +ℒ)𝜑(r − s,Xs)ds=𝜑(r − t,Xt)−𝜑(r,X0)

is a martingale under any solution ℙ of the martingale problem associated to ℙ. Now Mr
r =𝜑(0,Xr)−𝜑(r,

X0) so

0=𝔼ℙ[Mr
r −Mt

r|ℱt]=𝔼ℙ[𝜑(0,Xr)−𝜑(r − t,Xt)|ℱt]

tells me that for any r ⩾ t we have

𝔼ℙ[𝜑(0,Xr)|ℱt]=𝔼ℙ[𝜑(r − t,Xt)|ℱt]=𝜑(r − t,Xt), ℙ−a.s.

So the value of this expectation essentially do not depends on which solution of the martingale problem we
get

𝔼ℙ[𝜑(0,Xr)]=𝔼ℙ[𝔼ℙ[𝜑(0,Xr)|ℱ0]]=𝔼ℙ[𝜑(r,X0)]
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and if ℚ is another solution with Lawℚ(X0)=Lawℙ(X0) then we conclude that

𝔼ℙ[𝜑(0,Xr)]=𝔼ℚ[𝜑(0,Xr)]

for any r ⩾ 0. Let us assume know that the Kolmogorov backward equation has solution for any initial
condition 𝜓∈C0

∞(ℝn) (where the 0 means compactly supported). This implies that if we use such solutions
in the argument above we get that for any 𝜓∈C0

∞(ℝn) we have

𝔼ℙ[𝜓(Xr)]=𝔼ℚ[𝜓(Xr)]

and this implies that

Lawℙ(Xr)=Lawℚ(Xr) (3)

for any r⩾0. So we deduced that the one time marginals of ℙ and ℚ coincide. Now let 𝜓∈C0
∞(ℝn) and let

𝜑𝜓 to be the solution of (2) such that 𝜑(0,x)=𝜓(x) for all x ∈ℝn then as we already seen 𝔼ℙ[𝜓(Xr)|ℱt]=
𝜑𝜓(r − t,Xt), therefore for any r1> r2 ⩾0 we have for any bounded and measurable g:ℝn →ℝn

𝔼ℙ[𝜓(Xr1)g(Xr2)]=𝔼ℙ[𝔼ℙ[𝜓(Xr1)|ℱr2]g(Xr2)]=𝔼ℙ[𝜑𝜓(r1− r2,Xr2)g(Xr2)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
g̃(Xr2)

]

=
eq.(3)

𝔼ℚ[𝜑𝜓(r1 − r2,Xr2)g(Xr2)]=𝔼ℚ[𝜓(Xr1)g(Xr2)]

since 𝜓 and g are arbitrary we conclude that

Lawℙ(Xr1,Xr2)=Lawℚ(Xr1,Xr2).

We can continue by induction and deduce that ℙ,ℚ have the same finite dimensional marginals, and there-
fore are equal as probability measures on 𝒞. (think about it). Moreover note that we also have for any r > t

𝔼ℙ[𝜓(Xr)|ℱt]=𝜑𝜓(r − t,Xt),

which implies that the process (Xt)t⩾0 under ℙ is a Markov process, indeed for any t1< ⋅ ⋅ ⋅ < tn < r we have

𝔼ℙ[𝜓(Xr)g(Xt1, . . . ,Xtn)]=𝔼ℙ[𝔼[𝜓(Xr)|ℱtn]g(Xt1, . . . ,Xtn)]=𝔼ℙ[𝜑𝜓(r − tn,Xtn)g(Xt1, . . . ,Xtn)]

but also

𝔼ℙ[𝔼[𝜓(Xr)|Xtn]g(Xt1, . . . ,Xtn)]=𝔼ℙ[𝜑𝜓(r − tn,Xtn)g(Xt1, . . . ,Xtn)]

from which we get

𝔼ℙ[𝔼[𝜓(Xr)|Xtn]g(Xt1, . . . ,Xtn)]=𝔼ℙ[𝜓(Xr)g(Xt1, . . . ,Xtn)]

and by a monotone class argument one deduce that

𝔼[𝜓(Xr)|Xtn]=𝔼[𝔼[𝜓(Xr)|Xtn]|ℱtn]=𝔼[𝜓(Xr)|ℱtn]

for any 𝜓∈C0
∞(ℝn) which approximates any continuous function and then also indicator functions of open

sets from which we conclude that it is true for any 𝜓 which is bounded and measurable. This proves the
Markov property of (Xt)t⩾0 under ℙ.

Theorem 3. Assume that the Kolmogorov backward PDE

∂t𝜑(t, x)=ℒ𝜑(t,x), 𝜑(0, ⋅)=𝜓

has a solution 𝜑∈C1,2(ℝ+ ×ℝn) for any 𝜓∈C0
∞(ℝn) then the martingale problem associated to ℒ in the

sense of Definition 1 has a unique solution in the sense of Definition 2. (and as a consequence uniqueness
of weak solutions to the associated SDE).
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Remark 4. This reduces the uniqueness problem to a problem about existence of enough regular solutions
to a PDE. Note that the set of initial conditions C0

∞(ℝn) could be replaced by any set 𝒟 with the property
that if two probability measures 𝜇,𝜈∈Π(ℝn) satisfy

�
ℝn

f (x)𝜇(dx)=�
ℝn

f (x)𝜈(dx), f ∈𝒟

then 𝜇=n, i.e. 𝒟 is a determining (or separating) class for Π(ℝn).

Remark 5. What about existence of solutions to the martingale problem.

a) (Construction of the weak solution SDE) maybe strong solutions via fixpoint arguments, or time-
change, or Girsanov transformation (to be seen), Doob's transform.

b) (Compactness arguments) Assume that we have a sequence of probabilities (ℙn)n on 𝒞 such that
ℙn solve the martingale problem wrt. ℒn (some generator). Assume also that we can show point-
wise convergence of ℒn to a limiting generator ℒ, in the sense that for any f “in a large class of
functions” we have that ℒnf (x)=ℒf (x) uniformly in x ∈ℝn. Assume also that the family (ℙn)n is
tight on 𝒞, then one can show that any accumulation point of (ℙn)n wrt. to the weak topology of
probability measures is a solution of the martingale problem for ℒ.

c) (Markov process theory) If one can construct the semigroup (Pt)t⩾0 in the space of continuous func-
tions C(ℝn), associated to the operator ℒ in the sense that ∂tPt =ℒPt in the sense of Hille–Yoshida
theory. Then one can construct a measure ℙ using P to specify the finite dimensional distributions
and then prove that it is a solution of the martingale problem. (this is stated here very vaguely).

Theorem 6. (Stroock–Varadhan) Assume b,𝜎 is are bounded measurable functions and a is bounded from
below away from zero (in the sense of symmetric matrices) then there exists a solution to the martingale
problem for ℒ and the martingale problem for ℒ has a unique solution.

The condition on a means that there exists 𝜆>0 such that ⟨v,a(x)v⟩ℝn ⩾𝜆‖v‖ℝn
2 for any v∈ℝn and x ∈ℝn

(ellipticity condition).
There is no further regularity requirement on the coefficients, i.e. they can be discontinuous.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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