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SDE techniques: Girsanov's theorem
Equivalence of measures in a filtered probability space, Girsanov transformation, applications of Girsanov
formula: Doob's transform, change of measure, weak solution to SDE via Girsanov.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Let (Ω,ℱ,(ℱt)t⩾0) be a filtered probability space with a right-continuous filtration and let ℙ,ℚ two prob-
ability measures on this space. Assume that ℚ≪ℙ and define the positive martingale

Zt ≔𝔼[H|ℱt], t ⩾0,

where H = dℚ
dℙ is the Randon-Nikodym derivative of ℚ to wrt. to ℙ, i.e. the unique random variable H ∈

L1(ℙ) such that ℚ(A)=𝔼ℙ(H1A).
Note that (Zt)t⩾0 is uniformly integrable and Z∞ =limt→∞Zt =𝔼[H|ℱ∞] in L1(ℙ) and a.s.
Bayes formula: if X ∈L1(ℚ)∩L1(ℙ) and X ∈ℱt then for any t ⩾ s

𝔼ℚ[X|ℱs]= 𝔼ℙ[ZtX|ℱs]
Zs

, ℚ−a.s. (1)

this is well defined when Zs >0 and note that ℚ(Zs =0)=𝔼ℙ[Zs1Zs=0]=0.
Define T = inf {s ⩾ 0: Zs = 0} and recall that on T < ∞ we have that Zs = 0 for all s ⩾ T , then ℚ(T < ∞) =
𝔼ℙ[ZT1ZT =0]=0 and if ℙ≪ℚ we have also that ℙ(T <∞)=0 so Zt >0 for all t >0 ℙ-a.s.

Remark 1. There is no reason in general that the martingale (Zt)t⩾0 is continuous. Think for example to
the filtration (ℱt)t⩾0 generated by a Poisson process (Nt)t⩾0.

We are going to assume all along that (Zt)t⩾0 is continuous and that ℙ∼ℚ.

Lemma 2. (Xt)t⩾0 is a ℚ-martingale iff (Zt Xt)t⩾0 is a ℙ-martingale. The same is true also for local
martingales.

Proof. We will prove only one of the directions. Assume tha ZX is a ℙ-martingale, then by Bayes for-
mula (1) we have 𝔼ℚ[Xt|ℱs] = Zs

−1𝔼ℙ[ZtXt|ℱs] = Xs so (Xt)t⩾0 is a martingale (check that indeed Xt is in
L1(ℚ) for any t⩾0). Assume now that the stopped process (ZX)T is a ℙ-martingale for some stopping time
T , moreover observe that for any A∈ℱs we have for s< t,

𝔼ℚ[Xs
T1A]=𝔼ℙ[Zs

TXs
T1A]=𝔼ℙ[Zt∧TXt

T1A]=𝔼ℚ[Xt
T1A]

(the first and last equality can be obtained by considering the partition 1=1T <s+1T ⩾s and the same for t) so

𝔼ℚ[Xt
T |ℱs]=Xs

T .

By localization if (XZ) is a ℙ-local martingale this shows that X is a ℚ-local martingale. In this part of the
proof we just used that ℚ≪ℙ but in order to prove the converse one has to use that ℙ ≪ℚ to have Zt >0
always. □
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Assume that (Xt)t⩾0 is a continuous spositive local martingale which is almost surely Xt > 0 then we can
define the continuous local martingale

Lt =log(X0)+�
0

t
Xs

−1dXs

and note that (Xt)t⩾0 is the solution to the SDE dXt =XtdLt and a solution Y to this equation is given by

Yt =exp�Lt −
1
2[L]t�=ℰ(L)t

and by using Ito formula one can check that the process (Yt
−1Xt)t⩾0 is constant, therefore Xt = X0Yt. The

process ℰ(L) is called the stochastic exponential of the continuous local martingale L. Via the stochastic
exponential we can associate a continuous local martingale L to any continuous stricly positive local mar-
tingale X.

So we can write Zt =ℰ(L)t (which defines L given Z).

Take (Mt)t⩾0 to be a ℙ-local martingale and let M̃ ≔M − [L,M] then by Ito formula

d(ZM̃)t =ZtdM̃t −M̃tdZt +d[Z, M̃]t =ZtdMt − M̃tdZt +d[Z,M]t −Ztd[L,M]t|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

=ZtdMt −M̃tdZt

where we used that [Z,M]t =[Z,M̃]t and that dZt =ZtdLt. Therefore ZM̃ is a ℙ-local martingale and by the
previous lemma we have that M̃ is a ℚ-local martingale. Therefore we proved that

Theorem 3. (Girsanov) Assume ℚ∼ℙ and define Z =ℰ(L) as above. Then if M is a ℙ-local martingale,
the process M̃ ≔M − [L,M] is a ℚ-local martingale. In particular since [M]=[M̃] we have that if M is a
Brownian motion then M̃ is also a Brownian motion.

Remark 4. Note that L̃ =L − [L] so we have

Zt
−1=exp(−Lt +[L]t/2)=exp(−L̃t − [L̃]t/2)=ℰ(−L̃t)

and is easy to check that

𝔼� dℙ
dℚ�ℱt�=Zt

−1, t ⩾0.

So the relation between ℚ and ℙ is simmetric, indeed M̃ =M −[L,M]=M −[L̃,M̃] and M =M̃ −[(−L̃),M̃].

Remark 5. By Girsanov's theorem we see that equivalent measures agree on classifying a process as a
semimartingale. Indeed if X = X0 + M + V is a ℙ semimartingale then X is also a ℚ-semimartingale with
decomposition X =X0 +M̃ + Ṽ where M̃ =M − [L,M] and Ṽ =V +[L,M].

In many applications we have a measure ℙ and a positive continuous martingale (Zt)t⩾0 with which we can
define a new measure ℚ such that

dℚ
dℙ �

ℱt

=Zt, t ⩾0.

This is enough to define the measure ℚ on ℱ∞ = ∨t⩾0ℱt. If this is not the full ℱ then we can simply let
dℚ=Z∞dℙ where Z∞ =limt→∞Zt provided the martingale is uniformly integrable.
Note that Z is uniformly integrable iff ℚ≪ℙ.
However in many aplications we only have that (Zt)t⩾0 is a martingale but not uniformly integrable. In that
case we can apply Girsanov's theorem on any bounded interval [0,T] so we can also deduce that it extends
to this situation.
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Example 6. (Brownian motion with drift) Let 𝛾∈ℝn and B to be a n-dimensional Brownian motion, define
the process Lt =γ⋅Bt

Zt =exp�Lt −
1
2[L]t�=exp�γ⋅Bt −

1
2|γ|2t�, t ⩾0,

is a strictly positive continuous local martingale and it defines a new measure ℚ on ℱ∞ under which the
process

B̃t
𝛼 =Bt

𝛼 − [L,B𝛼]t =Bt
𝛼 −𝛾𝛼t, 𝛼=1, . . . ,n, t ⩾0,

is a ℚ-Brownian motion. So under ℚ the process B is Brownian motion with a drift 𝛾. The measure ℚ is
not absolutely continuous wrt. ℙ. Indeed consider the event

A={{{{{{{{{{{{{{{{{{{{{{{{ lim
t→∞

B̃t +𝛾t
t =𝛾}}}}}}}}}}}}}}}}}}}}}}}}∈ℱ∞

for which we have (by the law of iterated log) ℚ(A) = 1 while ℙ(A) = 0 unless 𝛾 = 0. And similarly one
shows that ℙ,ℚ are singular. This is linked to the fact that (Zt)t⩾0 is not uniformly integrable.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Next lecture: Doob's transform, applications to weak solutions of SDE, and also to conditioning, relations
with the martingale problems.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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