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SDE techniques: Girsanov's theorem

Equivalence of measures in a filtered probability space, Girsanov transformation, applications of Girsanov
formula: Doob's transform, change of measure, weak solution to SDE via Girsanov.

Let (Q, %, (%,):>0) be a filtered probability space with a right-continuous filtration and let P, Q two prob-
ability measures on this space. Assume that Q « P and define the positive martingale

Zt::E[Hl'Git]v t>09

where H = 3%8 is the Randon-Nikodym derivative of Q to wrt. to P, i.e. the unique random variable H €

L'(P) such that Q(A) =Ep(H1,).
Note that (Z;),5¢ is uniformly integrable and Z., =lim;,Z;= E[H|¥] in L'(P) and a.s.
Bayes formula: if X L'(Q) nL!(P) and X € %, then for any ¢>s

Bolxig] = ERZXF] oy )

this is well defined when Z;> 0 and note that Q(Z;=0) = Ep[Z;1,-9] =0.

Define T =inf {s > 0: Z,= 0} and recall that on T < co we have that Z;=0 for all s> T, then Q(7T < o) =
Ep[Z71z,-0] =0 and if P « Q we have also that P(7 <o) =0s0 Z, >0 for all >0 P-a.s.

Remark 1. There is no reason in general that the martingale (Z;);¢ is continuous. Think for example to
the filtration (%,),50 generated by a Poisson process (V).

We are going to assume all along that (Z,),>¢ is continuous and that P ~ Q.

Lemma 2. (X;);>0 is a Q-martingale iff (Z;X;):>0 is a P-martingale. The same is true also for local
martingales.

Proof. We will prove only one of the directions. Assume tha ZX is a P-martingale, then by Bayes for-
mula (1) we have Eq[X;| %] =Z;'Ep[ZX/|F,] = X, so (X;);>0 is a martingale (check that indeed X; is in
L'(Q) for any #>0). Assume now that the stopped process (ZX)” is a P-martingale for some stopping time
T, moreover observe that for any A € %, we have for s <¢,

Eq[X{ 14] = Ep[Z{X] 1a] = Ep[ZirrX/ 14] = Eq[X{ 1]
(the first and last equality can be obtained by considering the partition 1 = 174+ 175, and the same for #) so
EqlX/|1F1=X!.
By localization if (XZ) is a P-local martingale this shows that X is a Q-local martingale. In this part of the

proof we just used that Q « P but in order to prove the converse one has to use that P « Q to have Z, >0
always. O



Assume that (X;);>o is a continuous spositive local martingale which is almost surely X; >0 then we can
define the continuous local martingale

Li=log(Xo) + [ X7'dx
t = Og( 0) + fO s s
and note that (X;),>¢ is the solution to the SDE dX;=X;dL, and a solution Y to this equation is given by
1
¥i=exp(L-5ILL ) =5 (L),

and by using Ito formula one can check that the process (Y 'x,) (>0 is constant, therefore X, = XoY;. The
process & (L) is called the stochastic exponential of the continuous local martingale L. Via the stochastic
exponential we can associate a continuous local martingale L to any continuous stricly positive local mar-
tingale X.

So we can write Z, = &€ (L), (which defines L given Z).
Take (M;);>0 to be a P-local martingale and let M :=M —-[L,M] then by Ito formula

d(ZM),=Z,dM,-M,dZ, +d[Z,M ], = Z,dM,-M,dZ, + d[Z,M ],- Zd[L, M, = Z,dM, - M,dZ,
=0

where we used that [Z,M ], = [Z:]l;l ]; and that dZ, =Z,dL,. Therefore 7M is a P-local martingale and by the
previous lemma we have that M is a Q-local martingale. Therefore we proved that

Theorem 3. (Girsanov) Assume Q ~ P and define Z=€(L) as above. Then if M is a P-local martingale,
the process M:=M —[L,M] is a Q-local martingale. In particular since [M]=[M] we have that if M is a
Brownian motion then M is also a Brownian motion.

Remark 4. Note that L =L —[L] so we have

Z7'=exp(-L,+[L];/2) =exp(-L,~[L],/2) = € (-L,)

and is easy to check that

?la

So the relation between Q and P is simmetric, indeed M=M- [L,M]=M- [E,I\;I] and M =M - [(—Z),M].

97,]=Z;1, 1>0.

Remark 5. By Girsanov's theorem we see that equivalent measures agree on classifying a process as a
semimartingale. Indeed if X =X+ M +V is a P semimartingale then X is also a Q-semimartingale with
decomposition X =Xo+M +V where M =M —[L,M] and V=V + [L,M].

In many applications we have a measure P and a positive continuous martingale (Z;),>o with which we can
define a new measure Q such that

This is enough to define the measure Q on ¥, = v;50%;. If this is not the full ¥ then we can simply let
dQ =Z.dP where Z., =lim,_,..Z, provided the martingale is uniformly integrable.

Note that Z is uniformly integrable iff Q « P.

However in many aplications we only have that (Z;),>¢ is a martingale but not uniformly integrable. In that
case we can apply Girsanov's theorem on any bounded interval [0, T] so we can also deduce that it extends
to this situation.



Example 6. (Brownian motion with drift) Let y € R” and B to be a n-dimensional Brownian motion, define
the process L, =7y - B,

1 1
Zi=exp(Li-31L1 ) =exp( 7B~y Pr). 130,

is a strictly positive continuous local martingale and it defines a new measure Q on %, under which the
process

Bf=BY-[L,B“,=Bf -y, a=1,...,n,t>0,

is a Q-Brownian motion. So under Q the process B is Brownian motion with a drift . The measure Q is
not absolutely continuous wrt. P. Indeed consider the event

A:{lith-;WZY}E%m
t—oo

for which we have (by the law of iterated log) Q(A) =1 while P(A) =0 unless y =0. And similarly one
shows that P, Q are singular. This is linked to the fact that (Z;),>¢ is not uniformly integrable.

Next lecture: Doob's transform, applications to weak solutions of SDE, and also to conditioning, relations
with the martingale problems.
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