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Exercise 1 (Pts 4+2) (Martingale problem) Let b : Rn → Rn, σ : Rn → Rn×n locally bounded
coefficients. Let a(x) = σ(x)σ(x)T ∈ Rn×n and for all f ∈ C2(Rn) let

Lf(x) = b(x) · ∇f(x) +
1

2
Tr[a(x)∇2f(x)], x ∈ Rn

where ∇2f(x) is the Rn×n matrix of second derivatives of f .

a) Prove that the following conditions are equivalent

i. For any f ∈ C2(Rd), the process Mf
t = f(Xt)− f(X0)−

∫ t
0
Lf(Xs)ds is a local martingale.

ii. For any v ∈ Rd, the process Mv
t = v · Xt − v · X0 −

∫ t
0
v · b(Xs)ds is a local martingale with

quadratic variation

[Mv]t =

∫ t

0

v · a(Xs)vds.

iii. For any v ∈ Rd the process

Zvt = exp

(
Mv
t −

1

2

∫ t

0

v · a(Xs)vds

)
is a local martingale.

[Hint: use the fact that linear combinations of exponentials are dense in C2 w.r.t. uniform convergence
on compacts for the functions and its first two derivatives (assumed wihtout proof)]

b) Show that any of conditions a,b,c imply that

(f(Xt)/f(X0)) exp

(
−
∫ t

0

Lf
f

(Xs)ds

)
is a local martingale for every stricly positive C2 function f .

Exercise 2 (Pts 2+2+2) Let (Bt)t>0 be a one dimensional Brownian motion. Find the SDEs satisfied
by the following processes: (for all t > 0)

a) Xt = Bt/(1 + t),

b) Xt = sin(Bt)

c) (Xt, Yt) = (a cos(Bt), b sin(Bt)) where a, b ∈ R with ab 6= 0

Exercise 3 (Pts 2+2+2+2) (Variation of constants) Consider the nonlinear SDE

dXt = f(t,Xt)dt+ c(t)XtdBt, X0 = x,

where f : R+ × R→ R and c : R+ → R are continuous deterministic functions.

a) Find an explicit solution Zt in the case f = 0 and Z0 = 1.

b) Use the Ansatz Xt = CtZt to show that X solves the SDE provided C solves an ODE with random
coefficients.
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c) Apply this method to solve the SDE

dXt = X−1
t dt+ αXtdBt, X0 = x

where α is a constant.

d) Apply the method to study the solution of the SDE

dXt = Xγ
t dt+ αXtdBt, X0 = x > 0

where α and γ are constants. For which values of γ do we get explosion ,i.e. the solution tends to
+∞ for finite time?
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