V4F1 Stochastic Analysis – Problem Sheet 1

Version 2. Tutorial classes: Mon May 4th 16–18 (Zoom) Min Liu |Wed May 7th 16–18 (Zoom) Daria Frolova. Solutions in groups of 2 (at most). To be handled in IATEX or TEX_{MACS} format via eCampus not later than 4pm Thursday April 30th. Use this sheet for your solutions and write them under the corresponding exercise. Fill out your names below.

Names: XXXXXXXXXXXX/YYYYYYYYYYYYYYYYY

Exercise 1 (Pts 4+2) (Martingale problem) Let $b : \mathbb{R}^n \to \mathbb{R}^n$, $\sigma : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ locally bounded coefficients. Let $a(x) = \sigma(x)\sigma(x)^T \in \mathbb{R}^{n \times n}$ and for all $f \in C^2(\mathbb{R}^n)$ let

$$\mathcal{L}f(x) = b(x) \cdot \nabla f(x) + \frac{1}{2} \operatorname{Tr}[a(x)\nabla^2 f(x)], \qquad x \in \mathbb{R}^n$$

where $\nabla^2 f(x)$ is the $\mathbb{R}^{n \times n}$ matrix of second derivatives of f.

a) Prove that the following conditions are equivalent

i. For any $f \in C^2(\mathbb{R}^d)$, the process $M_t^f = f(X_t) - f(X_0) - \int_0^t \mathcal{L}f(X_s) ds$ is a local martingale.

ii. For any $v \in \mathbb{R}^d$, the process $M_t^v = v \cdot X_t - v \cdot X_0 - \int_0^t v \cdot b(X_s) ds$ is a local martingale with quadratic variation

$$[M^{v}]_{t} = \int_{0}^{t} v \cdot a(X_{s}) v \mathrm{d}s.$$

iii. For any $v \in \mathbb{R}^d$ the process

$$Z_t^v = \exp\left(M_t^v - \frac{1}{2}\int_0^t v \cdot a(X_s)v \mathrm{d}s\right)$$

is a local martingale.

[Hint: use the fact that linear combinations of exponentials are dense in C^2 w.r.t. uniform convergence on compacts for the functions and its first two derivatives (assumed without proof)]

b) Show that any of conditions a,b,c imply that

$$(f(X_t)/f(X_0)) \exp\left(-\int_0^t \frac{\mathcal{L}f}{f}(X_s) \mathrm{d}s\right)$$

is a local martingale for every stricly positive C^2 function f.

Exercise 2 (Pts 2+2+2) Let $(B_t)_{t\geq 0}$ be a one dimensional Brownian motion. Find the SDEs satisfied by the following processes: (for all $t \geq 0$)

- a) $X_t = B_t / (1+t),$
- b) $X_t = \sin(B_t)$
- c) $(X_t, Y_t) = (a \cos(B_t), b \sin(B_t))$ where $a, b \in \mathbb{R}$ with $ab \neq 0$

Exercise 3 (Pts 2+2+2+2) (Variation of constants) Consider the nonlinear SDE

 $dX_t = f(t, X_t)dt + c(t)X_t dB_t, \qquad X_0 = x,$

where $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ and $c : \mathbb{R}_+ \to \mathbb{R}$ are continuous deterministic functions.

- a) Find an explicit solution Z_t in the case f = 0 and $Z_0 = 1$.
- b) Use the Ansatz $X_t = C_t Z_t$ to show that X solves the SDE provided C solves an ODE with random coefficients.

c) Apply this method to solve the SDE

$$\mathrm{d}X_t = X_t^{-1}\mathrm{d}t + \alpha X_t\mathrm{d}B_t, \qquad X_0 = x$$

where α is a constant.

d) Apply the method to study the solution of the SDE

$$\mathrm{d}X_t = X_t^{\gamma} \mathrm{d}t + \alpha X_t \mathrm{d}B_t, \qquad X_0 = x > 0$$

where α and γ are constants. For which values of γ do we get explosion , i.e. the solution tends to $+\infty$ for finite time?