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Let (Ω := C(R>0;R),F ,F•,P) the one dimensional Wiener space and X the canonical process.

Exercise 1 (Pts 2+2+2+2+2) Find a predictable process F such that

Φ = E[Φ] +

∫ ∞

0

FsdXs

when Φ ∈ L2(Ω,FT ,P) is each of the following r.v. (with T > 0 fixed)

X2
T , eXT ,

∫ T

0

Xtdt, X3
T , sin(XT ).

(One possible approach: for any Φ try to find a martingale (Mt)t such that MT = Φ, and then apply
Ito formula).

Exercise 2 (Pts 2+2+2) We want to prove that the linear span of r.v. of the form

E(h) = cos

(∫
hsdXs

)
exp

(
1

2

∫
h2
sds

)
, F (h) = sin

(∫
hsdXs

)
exp

(
1

2

∫
h2
sds

)
, h ∈ L2(R>0),

is dense in L2(Ω,F ,P) (h is a deterministic function and the integrals are over R>0).

a) Show that if G ∈ L2(Ω,F ,P) is orthogonal to all {E(h), F (h) : h ∈ L2(R)}, then in particular

E[G exp(iλ1Bt1 + · · ·+ iλnBtn)] = 0

for all λ1, . . . , λn ∈ R and t1, · · · , tn > 0.

b) Deduce from this that G is orthogonal to all functions of the from φ(Bt1 , . . . , Btn) with φ ∈ C∞
0 .

[Hint: use Fourier transform]

c) Conclude.

Exercise 3 (Pts 4+4) Use the class of functions introduced in Exercise 2 to reprove the Brownian
martingale representation theorem.

a) Determine the martingale representation for functions Φ of the from

Φ =
∑
i

(aiE(hi) + biF (hi))

where ai, bi ∈ R, hi ∈ L2(R>0) and the sum is finite.

b) Use the density of such functions to approximate an arbitrary element Φ ∈ L2 and conclude.
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