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Exercise 1 (Pts 2+3+2) Let (Bt)t>0 be a one dimensional Brownian motion.

a) Define the process

Xt = a(t)

(
x0 +

∫ t

0

b(s)dBs

)
where a, b : R+ → R are differentiable functions with a(0) = 1 and a(t) > 0. Compute the SDE
satisfied by this process.

b) Use (a) to find an explicit solution for the SDEs in eqns.(1), (2), (3):{
dXt = −αXtdt+ σdBt t ∈ [0, T ]
X0 = x0

(1)

where α, σ, T are positive constants.{
dXt = − Xt

1−t
dt+ dBt t ∈ [0, 1)

X0 = 0
(2)

{
dXt = tXtdt+ et

2/2dBt t ∈ [0, T ]
X0 = 1

(3)

c) Are the solutions of the SDEs in (b) strong and pathwise unique?

Exercise 2 (Pts 2+2+2) Let (Bt)t>0 be a one dimensional Brownian motion.

a) Given f ∈ C(R+), prove that Xt =
∫ t

0
f(s)dBs is a Gaussian random variable with mean 0 and

variance
∫ t

0
f(u)2du for all t > 0.

b) The Ornstein–Uhlenbeck process (Xt)t>0 is defined as the solution to the SDE{
dXt = (−αXt + β)dt+ σdBt t > 0
X0 = x0

(4)

where α, σ are positive constant and β, x0 ∈ R. Find the explicit solution to the SDE (4).

c) Prove that Xt converges in distribution as t → ∞ to a Gaussian random variable with mean β/α
and variance σ2/2α.

Exercise 3 (Pts 3+2+2) Let (Bt)t>0 be a 2-dimensional Brownian motion and X a two-dimensional
stochastic process solution to the SDE{

dXt = AXtdt+ dBt t > 0
X0 = ξ

(5)

where ξ is a random variable in R2 independent of B and

A =

(
α 1
0 α

)
with α ∈ R.
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a) Let φ(t) be a 2× 2 matrix that satisfies the ODE

φ̇(t) = Aφ(t), φ(0) = I2

where I2 is the 2×2 identity matrix. Show that φ(t) = eAt =
∑

n>0A
n tn

n!
and calculate φ(t) explicitly.

Find φ(t)−1 (inverse matrix).

b) Verify that

Xt = φ(t)

(
ξ +

∫ t

0

φ(s)−1dBs

)
solves the SDE (5).

c) Calculate the explicit solution of (5).

2


