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Exercise 1 (Pts 3) (Constant quadratic variation) Let M be a continuous local martingale and
S 6 T two stopping times. Prove that [M ]T = [M ]S < ∞ a.s implies Mt = MS for all t ∈ [S, T ] a.s. .
[Hint: consider the continuous local martingale Nt =

∫ t
0
I]S,T ](s)dMs].

Exercise 2 (Pts 3+3) (Feynman–Kac formula for Ito diffusions)

a) Consider the solution X of the SDE in Rn

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = x,

where B is a d-dimensional Brownian motion and b : Rn → Rn, σ : Rn → Rn×d locally bounded
continuous coefficients. Let L be the associated infinitesimal generator. Fix t > 0 and assume that
ϕ : Rn → R and V : [0, t]×Rn → R>0 are continuous functions. Show that any bounded C1,2 solution
u : [0, t]× Rn → R of the equation

∂
∂s
u(s, x) = Lu(s, x)− V (s, x)u(s, x), (s, x) ∈ (0, t]× Rn,
u(0, x) = ϕ(x),

has the stochastic representation

u(t, x) = E
[
ϕ(Xt) exp

(
−
∫ t

0

V (t− s,Xs)ds
)]

.

In particular, there is at most only one solution of the PDE.

[Hint: show that Mr = exp
(
−
∫ r
0
V (t− s,Xs)ds

)
u(t− r,Xr) is a local martingale].

b) The price of a security is modeled by a geometric Brownian motion X with parameters α, σ > 0:

dXt = αXtdt+ σXtdBt, X0 = x > 0.

At price y we have a running cost of V (y) per unit time. The total cost up to time t is then

At =

∫ t

0

V (Xs)ds.

Suppose that u is a bounded solution to the PDE

∂
∂s
u(s, x) = Lu(s, x)− βV (x)u(s, x), (s, x) ∈ (0, t]× R>0,
u(0, x) = 1,

where L is the generator of X. Show that the Laplace transform of At is given by

E[e−βAt ] = u(t, x).

Exercise 3 (Pts 3+3+3+2) (Continuous Branching Process) Consider a family of diffusions
(Xt(x))t>0,x>0 satisfying the SDE

dXt(x) = αXt(x)dt+
√
βXt(x)dBt, X0(x) = x,

where α ∈ R, β ∈ R>0. Existence of strong solutions to this equation follows from the Yamada–
Watanabe theorem. Let (X̃, B̃) be an independent copy of (X,B) and let Yt(x, y) = Xt(x) + X̃t(y) for
t > 0, x > 0, y > 0.
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a) (Branching) Compute the SDE satisfied by Y and prove that (Y (x, y))t>0 has the same law of
(Xt(x+ y))t>0. [Hint: use martingale caracterization of weak solutions and pathwise uniqueness]

b) (Duality) Show that this implies that there exists a function u : R>0 × R>0 → R>0 such that

E[e−λXt(x)] = e−xu(t,λ), x ∈ R>0 (1)

if we assume that the map x 7→ E[e−λXt(x)] is continuous.

c) Assume that u : R>0 × R>0 → R>0 is differentiable with respect to its first parameter. Apply Ito
formula to s 7→ Gs = e−u(t−s,λ)Xs(x) and determine which differential equation u should satisfy in
order for G to be a local martingale. Prove that in this case eq. (1) is satisfied (in particular, if a
solution of the equation exists then it is unique).

d) (Extinction probability) Find the explicit solution u for the differential equation and using eq. (1)
prove that if α = 0 then

P(Xt(x) = 0) = e−2x/(βt), x, t > 0.
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