Institute for Applied Mathematics – SS2020

Massimiliano Gubinelli

V4F1 Stochastic Analysis – Problem Sheet 4

Version 1, 2020.05.12. Tutorial classes: Mon May 25th 16–18 (Zoom) Min Liu |Wed May 27th 16–18 (Zoom) Daria Frolova. Solutions in groups of 2 (at most). To be handled in L^{AT}EX or TEX_{MACS} format via eCampus not later than 4pm Thursday May 21th. Use this sheet for your solutions and write them under the corresponding exercise. Fill out your names below.

Names: XXXXXXXXXXXX/YYYYYYYYYYYYYY

Exercise 1 (Pts 2) (Brownian motion on the unit sphere) Let $Y_t = B_t/|B_t|$ where B is a Brownian motion in \mathbb{R}^n and $n > 2$. Prove that the time-changed process

$$
Z_a = Y_{T_a},
$$
 $T = A^{-1},$ $A_t = \int_0^t |B_s|^{-2} ds,$

is a diffusion taking values in the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ with generator

$$
\mathcal{L}f(x) = \frac{1}{2} \left(\Delta f(x) - \sum_{i,j} x_i x_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right) - \frac{n-1}{2} \sum_i x_i \frac{\partial f}{\partial x_i}(x), \qquad x \in S^{n-1}.
$$

where Δ is the Laplacian in \mathbb{R}^n and where diffusion here means continuous time process solving the martingale problem for this generator.

Exercise 2 (Pts 2+2+2+1+1) (Polar points of Brownian motion for $d \ge 2$) Let (X, Y) be a Brownian motion on \mathbb{R}^2 starting at $(0,0)$. Let

$$
(M_t, N_t) := e^{X_t}(\cos(Y_t), \sin(Y_t)).
$$

We will assume without proof that

$$
\int_0^\infty e^{2X_s} \mathrm{d}s = +\infty, \qquad a.s.
$$

- a) Prove that (M, N) is a Brownian motion on \mathbb{R}^2 changed of time (starting from where?);
- b) Compute the Euclidean norm $|(M_t, N_t)|$ of the vector (M_t, N_t) and deduce that a Brownian motion B in \mathbb{R}^2 never visit the point $(-1,0)$, that is

$$
\mathbb{P}(\exists t > 0 : B(t) = (-1, 0)) = 0.
$$

- c) Conclude that B never visit any given point $x \neq (0, 0)$.
- d) Use the Markov property to deduce from (c) that $\mathbb{P}(\exists t > 0 : B(t) = (0, 0)) = 0$. [Hint: consider $\mathbb{P}(\exists t \geq 1/n : B(t) = (0,0))$ as $n \to 0.$
- e) Prove that a Brownian motion in \mathbb{R}^d with $d > 2$ does not visit any given point $x \in \mathbb{R}^d$.

Exercise 3 (Pts 2+2+2+1+1) (Transience of Brownian motion in $d \ge 3$) Let X be a Brownian motion in \mathbb{R}^3 starting from $a \in \mathbb{R}^3 \neq 0$. We say that a process Y is transient if $|Y_t| \to \infty$ as $t \to \infty$ almost surely.

- a) Prove that the process $M_t = 1/|X_t|$ is a positive local martingale.
- b) Prove that $M_{\infty} = \lim_{t \to \infty} M_t$ exists almost surely.
- c) Compute $\mathbb{E}[M_t]$ and deduce that $M_{\infty} = 0$. This implies that X is transient.
- d) Show that whatever the starting point is, X is always transient.
- e) Prove that a Brownian motion in \mathbb{R}^d with $d \geq 3$ is transient.

Exercise 4 (Pts 2) (Conformal invariance of Brownian motion) Let $f : \mathbb{C} \to \mathbb{C}$ be an holomorphic function and $Z = X + iY$ be a planar Brownian motion (with the identification of $\mathbb C$ with $\mathbb R^2$). Prove that the process $M_t = f(Z_t)$ is a continuous local martingale with values in $\mathbb C$. Deduce that it is a complex Brownian motion changed of time. This property is called conformal invariance of Brownian motion.