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Exercise 1 (Pts 2) (Brownian motion on the unit sphere) Let Yt = Bt/|Bt| where B is a Brow-
nian motion in Rn and n > 2. Prove that the time–changed process

Za = YTa , T = A−1, At =

∫ t

0

|Bs|−2ds,

is a diffusion taking values in the unit sphere Sn−1 = {x ∈ Rn : |x| = 1} with generator

Lf(x) =
1

2

(
∆f(x)−

∑
i,j

xixj
∂2f

∂xi∂xj
(x)

)
− n− 1

2

∑
i

xi
∂f

∂xi
(x), x ∈ Sn−1.

where ∆ is the Laplacian in Rn and where diffusion here means continuous time process solving the
martingale problem for this generator.

Exercise 2 (Pts 2+2+2+1+1) (Polar points of Brownian motion for d > 2) Let (X,Y ) be a
Brownian motion on R2 starting at (0, 0). Let

(Mt, Nt) := eXt(cos(Yt), sin(Yt)).

We will assume without proof that ∫ ∞
0

e2Xsds = +∞, a.s.

a) Prove that (M,N) is a Brownian motion on R2 changed of time (starting from where?) ;

b) Compute the Euclidean norm |(Mt, Nt)| of the vector (Mt, Nt) and deduce that a Brownian motion
B in R2 never visit the point (−1, 0), that is

P(∃t > 0 : B(t) = (−1, 0)) = 0.

c) Conclude that B never visit any given point x 6= (0, 0).

d) Use the Markov property to deduce from (c) that P(∃t > 0 : B(t) = (0, 0)) = 0. [Hint: consider
P(∃t > 1/n : B(t) = (0, 0)) as n→ 0.]

e) Prove that a Brownian motion in Rd with d > 2 does not visit any given point x ∈ Rd.

Exercise 3 (Pts 2+2+2+1+1) (Transience of Brownian motion in d > 3) Let X be a Brownian
motion in R3 starting from a ∈ R3 6= 0. We say that a process Y is transient if |Yt| → ∞ as t → ∞
almost surely.

a) Prove that the process Mt = 1/|Xt| is a positive local martingale.

b) Prove that M∞ = limt→∞Mt exists almost surely.

c) Compute E[Mt] and deduce that M∞ = 0. This implies that X is transient.

d) Show that whatever the starting point is, X is always transient.

e) Prove that a Brownian motion in Rd with d > 3 is transient.
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Exercise 4 (Pts 2) (Conformal invariance of Brownian motion) Let f : C→ C be an holomor-
phic function and Z = X + iY be a planar Brownian motion (with the identification of C with R2).
Prove that the process Mt = f(Zt) is a continuous local martingale with values in C. Deduce that it is
a complex Brownian motion changed of time. This property is called conformal invariance of Brownian
motion.
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