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Exercise 1 (Pts 2+2+2) (Passage time to a sloping line) Let X be a one–dimensional Brownian
motion with X0 = 0 and let a > 0, b ∈ R.

a) Let TL = inf{t > 0 : Xt = a+ bt} denote the first passage time to the line y = a+ bt. Show that

P(TL 6 t) = E[e−bXt−b2t/2ITa6t], (1)

where Ta = inf{t > 0 : Xt = a} is the first passage time to level a.

b) Recall that, by the reflection principle, the law of Ta is absolutely continuous with density

fTa(t) = at−3/2ϕ
(
a/
√
t
)
I(0,∞)(t),

where ϕ is the standard normal density. Deduce that the law of TL is absolutely continuous with
density

fTL(t) = at−3/2ϕ
(

(a+ bt)/
√
t
)
I(0,∞)(t).

[Hint: in (1) take the conditional expectation w.r.t. FTa ] .

c) Show that, for b > 0,

E[e−bXt max
s6t

(Xs)] ' eb
2t/2

2b
, and E[ebXt max

s6t
(Xs)] ' b teb

2t/2, as t→∞.

Exercise 2 (Pts 2+2+3) (Brownian Bridge) Let X be a d–dimensional Brownian motion with
X0 = 0.

a) Show that, for any y ∈ Rd, the process

Xy
t = Xt − t(X1 − y) t ∈ [0, 1]

is independent of X1.

b) Let µy denote the law of Xy on C([0, 1];Rd). Show that y 7→ µy is a regular version of the conditional
distribution of X given X1 = y.

c) Compute the SDE satisfied by the canonical process Y under the probability measure µy on the space
C([0, 1];Rd). (Hint: use Doob’s h-transform argument from the lectures)

Exercise 3 (Pts 3) Let M be a positive continuous supermartingale such that E[M0] <∞. Let M∞ =
limt→∞Mt. Show that if E[M∞] = E[M0] then M is a martingale and E[M∞|Ft] = Mt. [Hint: prove
that E[M∞|Ft] 6Mt and that E[Mt] = E[M0] and conclude.]

Exercise 4 (Pts 4) Prove directly that the h-transform gives a transformation of martingale problems
from the one with drift b and diffusion σ to another with same diffusion coefficient σ but different drift
b̃.
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