V4F1 Stochastic Analysis – Problem Sheet 5

Solutions in groups of 2 (at most). To be handled in LATEX or TEX_{MACS} format via eCampus not later than 4pm Thursday May 28th. Use this sheet for your solutions and write them under the corresponding exercise. Fill out your names below.

Exercise 1 (Pts 2+2+2) (Passage time to a sloping line) Let X be a one-dimensional Brownian motion with $X_0 = 0$ and let a > 0, $b \in \mathbb{R}$.

a) Let $T_L = \inf\{t \ge 0 : X_t = a + bt\}$ denote the first passage time to the line y = a + bt. Show that

$$\mathbb{P}(T_L \leqslant t) = \mathbb{E}[e^{-bX_t - b^2t/2} \mathbb{I}_{T_a \leqslant t}],\tag{1}$$

where $T_a = \inf\{t \ge 0 : X_t = a\}$ is the first passage time to level a.

b) Recall that, by the reflection principle, the law of T_a is absolutely continuous with density

$$f_{T_a}(t) = at^{-3/2}\varphi\left(a/\sqrt{t}\right)\mathbb{I}_{(0,\infty)}(t),$$

where φ is the standard normal density. Deduce that the law of T_L is absolutely continuous with density

$$f_{T_L}(t) = at^{-3/2}\varphi\left((a+bt)/\sqrt{t}\right)\mathbb{I}_{(0,\infty)}(t).$$

[Hint: in (1) take the conditional expectation w.r.t. \mathcal{F}_{T_a}].

c) Show that, for b > 0,

$$\mathbb{E}[e^{-bX_t}\max_{s\leqslant t}(X_s)]\simeq \frac{e^{b^2t/2}}{2b},\quad \text{and}\quad \mathbb{E}[e^{bX_t}\max_{s\leqslant t}(X_s)]\simeq b\operatorname{te}^{b^2t/2},\qquad \text{as }t\to\infty.$$

Exercise 2 (Pts 2+2+3) (Brownian Bridge) Let X be a d-dimensional Brownian motion with $X_0 = 0$.

a) Show that, for any $y \in \mathbb{R}^d$, the process

$$X_t^y = X_t - t(X_1 - y)$$
 $t \in [0, 1]$

is independent of X_1 .

- b) Let μ_y denote the law of X^y on $C([0,1]; \mathbb{R}^d)$. Show that $y \mapsto \mu_y$ is a regular version of the conditional distribution of X given $X_1 = y$.
- c) Compute the SDE satisfied by the canonical process Y under the probability measure μ_y on the space $C([0,1];\mathbb{R}^d)$. (Hint: use Doob's h-transform argument from the lectures)

Exercise 3 (Pts 3) Let M be a positive continuous supermartingale such that $\mathbb{E}[M_0] < \infty$. Let $M_{\infty} = \lim_{t \to \infty} M_t$. Show that if $\mathbb{E}[M_{\infty}] = \mathbb{E}[M_0]$ then M is a martingale and $\mathbb{E}[M_{\infty}|\mathcal{F}_t] = M_t$. [Hint: prove that $\mathbb{E}[M_{\infty}|\mathcal{F}_t] \leqslant M_t$ and that $\mathbb{E}[M_t] = \mathbb{E}[M_0]$ and conclude.]

Exercise 4 (Pts 4) Prove directly that the h-transform gives a transformation of martingale problems from the one with drift b and diffusion σ to another with same diffusion coefficient σ but different drift \tilde{b} .